summaryrefslogtreecommitdiff
path: root/node/Peer.cpp
blob: 21bbfabe2d03df4c8e4f64bc7b3689b67d405f44 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
/*
 * ZeroTier One - Network Virtualization Everywhere
 * Copyright (C) 2011-2018  ZeroTier, Inc.  https://www.zerotier.com/
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 * --
 *
 * You can be released from the requirements of the license by purchasing
 * a commercial license. Buying such a license is mandatory as soon as you
 * develop commercial closed-source software that incorporates or links
 * directly against ZeroTier software without disclosing the source code
 * of your own application.
 */

#include "../version.h"
#include "Constants.hpp"
#include "Peer.hpp"
#include "Node.hpp"
#include "Switch.hpp"
#include "Network.hpp"
#include "SelfAwareness.hpp"
#include "Packet.hpp"
#include "Trace.hpp"
#include "InetAddress.hpp"
#include "RingBuffer.hpp"
#include "Utils.hpp"

namespace ZeroTier {

Peer::Peer(const RuntimeEnvironment *renv,const Identity &myIdentity,const Identity &peerIdentity) :
	RR(renv),
	_lastReceive(0),
	_lastNontrivialReceive(0),
	_lastTriedMemorizedPath(0),
	_lastDirectPathPushSent(0),
	_lastDirectPathPushReceive(0),
	_lastCredentialRequestSent(0),
	_lastWhoisRequestReceived(0),
	_lastEchoRequestReceived(0),
	_lastComRequestReceived(0),
	_lastComRequestSent(0),
	_lastCredentialsReceived(0),
	_lastTrustEstablishedPacketReceived(0),
	_lastSentFullHello(0),
	_lastACKWindowReset(0),
	_lastQoSWindowReset(0),
	_lastMultipathCompatibilityCheck(0),
	_freeRandomByte(0),
	_uniqueAlivePathCount(0),
	_localMultipathSupported(false),
	_remoteMultipathSupported(false),
	_canUseMultipath(false),
	_vProto(0),
	_vMajor(0),
	_vMinor(0),
	_vRevision(0),
	_id(peerIdentity),
	_directPathPushCutoffCount(0),
	_credentialsCutoffCount(0),
	_linkIsBalanced(false),
	_linkIsRedundant(false),
	_remotePeerMultipathEnabled(false),
	_lastAggregateStatsReport(0),
	_lastAggregateAllocation(0)
{
	Utils::getSecureRandom(&_freeRandomByte, 1);
	if (!myIdentity.agree(peerIdentity,_key,ZT_PEER_SECRET_KEY_LENGTH))
		throw ZT_EXCEPTION_INVALID_ARGUMENT;
	_pathChoiceHist = new RingBuffer<int>(ZT_MULTIPATH_PROPORTION_WIN_SZ);
}

void Peer::received(
	void *tPtr,
	const SharedPtr<Path> &path,
	const unsigned int hops,
	const uint64_t packetId,
	const unsigned int payloadLength,
	const Packet::Verb verb,
	const uint64_t inRePacketId,
	const Packet::Verb inReVerb,
	const bool trustEstablished,
	const uint64_t networkId)
{
	const int64_t now = RR->node->now();

	_lastReceive = now;
	switch (verb) {
		case Packet::VERB_FRAME:
		case Packet::VERB_EXT_FRAME:
		case Packet::VERB_NETWORK_CONFIG_REQUEST:
		case Packet::VERB_NETWORK_CONFIG:
		case Packet::VERB_MULTICAST_FRAME:
			_lastNontrivialReceive = now;
			break;
		default: break;
	}

	if (trustEstablished) {
		_lastTrustEstablishedPacketReceived = now;
		path->trustedPacketReceived(now);
	}

	{
		Mutex::Lock _l(_paths_m);

		recordIncomingPacket(tPtr, path, packetId, payloadLength, verb, now);

		if (_canUseMultipath) {
			if (path->needsToSendQoS(now)) {
				sendQOS_MEASUREMENT(tPtr, path, path->localSocket(), path->address(), now);
			}
			for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
				if (_paths[i].p) {
					_paths[i].p->processBackgroundPathMeasurements(now);
				}
			}
		}
	}

	if (hops == 0) {
		// If this is a direct packet (no hops), update existing paths or learn new ones
		bool havePath = false;
		{
			Mutex::Lock _l(_paths_m);
			for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
				if (_paths[i].p) {
					if (_paths[i].p == path) {
						_paths[i].lr = now;
						havePath = true;
						break;
					}
				} else break;
			}
		}

		bool attemptToContact = false;
		if ((!havePath)&&(RR->node->shouldUsePathForZeroTierTraffic(tPtr,_id.address(),path->localSocket(),path->address()))) {
			Mutex::Lock _l(_paths_m);

			// Paths are redundant if they duplicate an alive path to the same IP or
			// with the same local socket and address family.
			bool redundant = false;
			unsigned int replacePath = ZT_MAX_PEER_NETWORK_PATHS;
			for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
				if (_paths[i].p) {
					if ( (_paths[i].p->alive(now)) && ( ((_paths[i].p->localSocket() == path->localSocket())&&(_paths[i].p->address().ss_family == path->address().ss_family)) || (_paths[i].p->address().ipsEqual2(path->address())) ) ) {
						redundant = true;
						break;
					}
					// If the path is the same address and port, simply assume this is a replacement
					if ( (_paths[i].p->address().ipsEqual2(path->address()) && (_paths[i].p->address().port() == path->address().port()))) {
						replacePath = i;
						break;
					}
				} else break;
			}
			// If the path isn't a duplicate of the same localSocket AND we haven't already determined a replacePath,
			// then find the worst path and replace it.
			if (!redundant && replacePath == ZT_MAX_PEER_NETWORK_PATHS) {
				int replacePathQuality = 0;
				for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
					if (_paths[i].p) {
						const int q = _paths[i].p->quality(now);
						if (q > replacePathQuality) {
							replacePathQuality = q;
							replacePath = i;
						}
					} else {
						replacePath = i;
						break;
					}
				}
			}
			if (replacePath != ZT_MAX_PEER_NETWORK_PATHS) {
				if (verb == Packet::VERB_OK) {
					RR->t->peerLearnedNewPath(tPtr,networkId,*this,path,packetId);
					_paths[replacePath].lr = now;
					_paths[replacePath].p = path;
					_paths[replacePath].priority = 1;
				} else {
					attemptToContact = true;
				}
			}
		}

		if (attemptToContact) {
			attemptToContactAt(tPtr,path->localSocket(),path->address(),now,true);
			path->sent(now);
			RR->t->peerConfirmingUnknownPath(tPtr,networkId,*this,path,packetId,verb);
		}
	}

	// If we have a trust relationship periodically push a message enumerating
	// all known external addresses for ourselves. We now do this even if we
	// have a current path since we'll want to use new ones too.
	if (this->trustEstablished(now)) {
		if ((now - _lastDirectPathPushSent) >= ZT_DIRECT_PATH_PUSH_INTERVAL) {
			_lastDirectPathPushSent = now;

			std::vector<InetAddress> pathsToPush;

			std::vector<InetAddress> dps(RR->node->directPaths());
			for(std::vector<InetAddress>::const_iterator i(dps.begin());i!=dps.end();++i)
				pathsToPush.push_back(*i);

			// Do symmetric NAT prediction if we are communicating indirectly.
			if (hops > 0) {
				std::vector<InetAddress> sym(RR->sa->getSymmetricNatPredictions());
				for(unsigned long i=0,added=0;i<sym.size();++i) {
					InetAddress tmp(sym[(unsigned long)RR->node->prng() % sym.size()]);
					if (std::find(pathsToPush.begin(),pathsToPush.end(),tmp) == pathsToPush.end()) {
						pathsToPush.push_back(tmp);
						if (++added >= ZT_PUSH_DIRECT_PATHS_MAX_PER_SCOPE_AND_FAMILY)
							break;
					}
				}
			}

			if (pathsToPush.size() > 0) {
				std::vector<InetAddress>::const_iterator p(pathsToPush.begin());
				while (p != pathsToPush.end()) {
					Packet outp(_id.address(),RR->identity.address(),Packet::VERB_PUSH_DIRECT_PATHS);
					outp.addSize(2); // leave room for count

					unsigned int count = 0;
					while ((p != pathsToPush.end())&&((outp.size() + 24) < 1200)) {
						uint8_t addressType = 4;
						switch(p->ss_family) {
							case AF_INET:
								break;
							case AF_INET6:
								addressType = 6;
								break;
							default: // we currently only push IP addresses
								++p;
								continue;
						}

						outp.append((uint8_t)0); // no flags
						outp.append((uint16_t)0); // no extensions
						outp.append(addressType);
						outp.append((uint8_t)((addressType == 4) ? 6 : 18));
						outp.append(p->rawIpData(),((addressType == 4) ? 4 : 16));
						outp.append((uint16_t)p->port());

						++count;
						++p;
					}

					if (count) {
						outp.setAt(ZT_PACKET_IDX_PAYLOAD,(uint16_t)count);
						outp.armor(_key,true);
						path->send(RR,tPtr,outp.data(),outp.size(),now);
					}
				}
			}
		}
	}
}

void Peer::recordOutgoingPacket(const SharedPtr<Path> &path, const uint64_t packetId,
	uint16_t payloadLength, const Packet::Verb verb, int64_t now)
{
	// Grab second byte from packetId to use as a source of entropy in the next path selection
	_freeRandomByte = (packetId & 0xFF00) >> 8;
	if (_canUseMultipath) {
		path->recordOutgoingPacket(now, packetId, payloadLength, verb);
	}
}

void Peer::recordIncomingPacket(void *tPtr, const SharedPtr<Path> &path, const uint64_t packetId,
	uint16_t payloadLength, const Packet::Verb verb, int64_t now)
{
	if (_canUseMultipath) {
		if (path->needsToSendAck(now)) {
			sendACK(tPtr, path, path->localSocket(), path->address(), now);
		}
		path->recordIncomingPacket(now, packetId, payloadLength, verb);
	}
}

void Peer::computeAggregateProportionalAllocation(int64_t now)
{
	float maxStability = 0;
	float totalRelativeQuality = 0;
	float maxThroughput = 1;
	float maxScope = 0;
	float relStability[ZT_MAX_PEER_NETWORK_PATHS];
	float relThroughput[ZT_MAX_PEER_NETWORK_PATHS];
	memset(&relStability, 0, sizeof(relStability));
	memset(&relThroughput, 0, sizeof(relThroughput));
	// Survey all paths
	for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
		if (_paths[i].p) {
			relStability[i] = _paths[i].p->lastComputedStability();
			relThroughput[i] = _paths[i].p->maxLifetimeThroughput();
			maxStability = relStability[i] > maxStability ? relStability[i] : maxStability;
			maxThroughput = relThroughput[i] > maxThroughput ? relThroughput[i] : maxThroughput;
			maxScope = _paths[i].p->ipScope() > maxScope ? _paths[i].p->ipScope() : maxScope;
		}
	}
	// Convert to relative values
	for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
		if (_paths[i].p) {
			relStability[i] /= maxStability ? maxStability : 1;
			relThroughput[i] /= maxThroughput ? maxThroughput : 1;
			float normalized_ma = Utils::normalize(_paths[i].p->ackAge(now), 0, ZT_PATH_MAX_AGE, 0, 10);
			float age_contrib = exp((-1)*normalized_ma);
			float relScope = ((float)(_paths[i].p->ipScope()+1) / (maxScope + 1));
			float relQuality =
				(relStability[i] * ZT_PATH_CONTRIB_STABILITY)
				+ (fmax(1, relThroughput[i]) * ZT_PATH_CONTRIB_THROUGHPUT)
				+ relScope * ZT_PATH_CONTRIB_SCOPE;
			relQuality *= age_contrib;
			// Arbitrary cutoffs
			relQuality = relQuality > (1.00 / 100.0) ? relQuality : 0.0;
			relQuality = relQuality < (99.0 / 100.0) ? relQuality : 1.0;
			totalRelativeQuality += relQuality;
			_paths[i].p->updateRelativeQuality(relQuality);
		}
	}
	// Convert set of relative performances into an allocation set
	for(uint16_t i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
		if (_paths[i].p) {
			_paths[i].p->updateComponentAllocationOfAggregateLink((_paths[i].p->relativeQuality() / totalRelativeQuality) * 255);
		}
	}
}

int Peer::computeAggregateLinkPacketDelayVariance()
{
	float pdv = 0.0;
	for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
		if (_paths[i].p) {
			pdv += _paths[i].p->relativeQuality() * _paths[i].p->packetDelayVariance();
		}
	}
	return pdv;
}

int Peer::computeAggregateLinkMeanLatency()
{
	int ml = 0;
	int pathCount = 0;
	for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
		if (_paths[i].p) {
			pathCount++;
			ml += _paths[i].p->relativeQuality() * _paths[i].p->meanLatency();
		}
	}
	return ml / pathCount;
}

int Peer::aggregateLinkPhysicalPathCount()
{
	std::map<std::string, bool> ifnamemap;
	int pathCount = 0;
	int64_t now = RR->node->now();
	for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
		if (_paths[i].p && _paths[i].p->alive(now)) {
			if (!ifnamemap[_paths[i].p->getName()]) {
				ifnamemap[_paths[i].p->getName()] = true;
				pathCount++;
			}
		}
	}
	return pathCount;
}

int Peer::aggregateLinkLogicalPathCount()
{
	int pathCount = 0;
	int64_t now = RR->node->now();
	for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
		if (_paths[i].p && _paths[i].p->alive(now)) {
			pathCount++;
		}
	}
	return pathCount;
}

SharedPtr<Path> Peer::getAppropriatePath(int64_t now, bool includeExpired)
{
	Mutex::Lock _l(_paths_m);
	unsigned int bestPath = ZT_MAX_PEER_NETWORK_PATHS;

	/**
	 * Send traffic across the highest quality path only. This algorithm will still
	 * use the old path quality metric from protocol version 9.
	 */
	if (!_canUseMultipath) {
		long bestPathQuality = 2147483647;
		for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
			if (_paths[i].p) {
				if ((includeExpired)||((now - _paths[i].lr) < ZT_PEER_PATH_EXPIRATION)) {
					const long q = _paths[i].p->quality(now) / _paths[i].priority;
					if (q <= bestPathQuality) {
						bestPathQuality = q;
						bestPath = i;
					}
				}
			} else break;
		}
		if (bestPath != ZT_MAX_PEER_NETWORK_PATHS) {
			return _paths[bestPath].p;
		}
		return SharedPtr<Path>();
	}

	for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
		if (_paths[i].p) {
			_paths[i].p->processBackgroundPathMeasurements(now);
		}
	}

	/**
	 * Randomly distribute traffic across all paths
	 */
	int numAlivePaths = 0;
	int numStalePaths = 0;
	if (RR->node->getMultipathMode() == ZT_MULTIPATH_RANDOM) {
		int alivePaths[ZT_MAX_PEER_NETWORK_PATHS];
		int stalePaths[ZT_MAX_PEER_NETWORK_PATHS];
		memset(&alivePaths, -1, sizeof(alivePaths));
		memset(&stalePaths, -1, sizeof(stalePaths));
		for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
			if (_paths[i].p) {
				if (_paths[i].p->alive(now)) {
					alivePaths[numAlivePaths] = i;
					numAlivePaths++;
				}
				else {
					stalePaths[numStalePaths] = i;
					numStalePaths++;
				}
			}
		}
		unsigned int r = _freeRandomByte;
		if (numAlivePaths > 0) {
			int rf = r % numAlivePaths;
			return _paths[alivePaths[rf]].p;
		}
		else if(numStalePaths > 0) {
			// Resort to trying any non-expired path
			int rf = r % numStalePaths;
			return _paths[stalePaths[rf]].p;
		}
	}

	/**
	 * Proportionally allocate traffic according to dynamic path quality measurements
	 */
	if (RR->node->getMultipathMode() == ZT_MULTIPATH_PROPORTIONALLY_BALANCED) {
		if ((now - _lastAggregateAllocation) >= ZT_PATH_QUALITY_COMPUTE_INTERVAL) {
			_lastAggregateAllocation = now;
			computeAggregateProportionalAllocation(now);
		}
		// Randomly choose path according to their allocations
		float rf = _freeRandomByte;
		for(int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
			if (_paths[i].p) {
				if (rf < _paths[i].p->allocation()) {
					bestPath = i;
					_pathChoiceHist->push(bestPath); // Record which path we chose
					break;
				}
				rf -= _paths[i].p->allocation();
			}
		}
		if (bestPath < ZT_MAX_PEER_NETWORK_PATHS) {
			return _paths[bestPath].p;
		}
	}
	return SharedPtr<Path>();
}

char *Peer::interfaceListStr()
{
	std::map<std::string, int> ifnamemap;
	char tmp[32];
	const int64_t now = RR->node->now();
	char *ptr = _interfaceListStr;
	bool imbalanced = false;
	memset(_interfaceListStr, 0, sizeof(_interfaceListStr));
	int alivePathCount = aggregateLinkLogicalPathCount();
	for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
		if (_paths[i].p && _paths[i].p->alive(now)) {
			int ipv = _paths[i].p->address().isV4();
			// If this is acting as an aggregate link, check allocations
			float targetAllocation = 1.0 / alivePathCount;
			float currentAllocation = 1.0;
			if (alivePathCount > 1) {
				currentAllocation = (float)_pathChoiceHist->countValue(i) / (float)_pathChoiceHist->count();
				if (fabs(targetAllocation - currentAllocation) > ZT_PATH_IMBALANCE_THRESHOLD) {
					imbalanced = true;
				}
			}
			char *ipvStr = ipv ? (char*)"ipv4" : (char*)"ipv6";
			sprintf(tmp, "(%s, %s, %.3f)", _paths[i].p->getName(), ipvStr, currentAllocation);
			// Prevent duplicates
			if(ifnamemap[_paths[i].p->getName()] != ipv) {
				memcpy(ptr, tmp, strlen(tmp));
				ptr += strlen(tmp);
				*ptr = ' ';
				ptr++;
				ifnamemap[_paths[i].p->getName()] = ipv;
			}
		}
	}
	ptr--; // Overwrite trailing space
	if (imbalanced) {
		sprintf(tmp, ", is asymmetrical");
		memcpy(ptr, tmp, sizeof(tmp));
	} else {
		*ptr = '\0';
	}
	return _interfaceListStr;
}

void Peer::introduce(void *const tPtr,const int64_t now,const SharedPtr<Peer> &other) const
{
	unsigned int myBestV4ByScope[ZT_INETADDRESS_MAX_SCOPE+1];
	unsigned int myBestV6ByScope[ZT_INETADDRESS_MAX_SCOPE+1];
	long myBestV4QualityByScope[ZT_INETADDRESS_MAX_SCOPE+1];
	long myBestV6QualityByScope[ZT_INETADDRESS_MAX_SCOPE+1];
	unsigned int theirBestV4ByScope[ZT_INETADDRESS_MAX_SCOPE+1];
	unsigned int theirBestV6ByScope[ZT_INETADDRESS_MAX_SCOPE+1];
	long theirBestV4QualityByScope[ZT_INETADDRESS_MAX_SCOPE+1];
	long theirBestV6QualityByScope[ZT_INETADDRESS_MAX_SCOPE+1];
	for(int i=0;i<=ZT_INETADDRESS_MAX_SCOPE;++i) {
		myBestV4ByScope[i] = ZT_MAX_PEER_NETWORK_PATHS;
		myBestV6ByScope[i] = ZT_MAX_PEER_NETWORK_PATHS;
		myBestV4QualityByScope[i] = 2147483647;
		myBestV6QualityByScope[i] = 2147483647;
		theirBestV4ByScope[i] = ZT_MAX_PEER_NETWORK_PATHS;
		theirBestV6ByScope[i] = ZT_MAX_PEER_NETWORK_PATHS;
		theirBestV4QualityByScope[i] = 2147483647;
		theirBestV6QualityByScope[i] = 2147483647;
	}

	Mutex::Lock _l1(_paths_m);

	for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
		if (_paths[i].p) {
			const long q = _paths[i].p->quality(now) / _paths[i].priority;
			const unsigned int s = (unsigned int)_paths[i].p->ipScope();
			switch(_paths[i].p->address().ss_family) {
				case AF_INET:
					if (q <= myBestV4QualityByScope[s]) {
						myBestV4QualityByScope[s] = q;
						myBestV4ByScope[s] = i;
					}
					break;
				case AF_INET6:
					if (q <= myBestV6QualityByScope[s]) {
						myBestV6QualityByScope[s] = q;
						myBestV6ByScope[s] = i;
					}
					break;
			}
		} else break;
	}

	Mutex::Lock _l2(other->_paths_m);

	for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
		if (other->_paths[i].p) {
			const long q = other->_paths[i].p->quality(now) / other->_paths[i].priority;
			const unsigned int s = (unsigned int)other->_paths[i].p->ipScope();
			switch(other->_paths[i].p->address().ss_family) {
				case AF_INET:
					if (q <= theirBestV4QualityByScope[s]) {
						theirBestV4QualityByScope[s] = q;
						theirBestV4ByScope[s] = i;
					}
					break;
				case AF_INET6:
					if (q <= theirBestV6QualityByScope[s]) {
						theirBestV6QualityByScope[s] = q;
						theirBestV6ByScope[s] = i;
					}
					break;
			}
		} else break;
	}

	unsigned int mine = ZT_MAX_PEER_NETWORK_PATHS;
	unsigned int theirs = ZT_MAX_PEER_NETWORK_PATHS;

	for(int s=ZT_INETADDRESS_MAX_SCOPE;s>=0;--s) {
		if ((myBestV6ByScope[s] != ZT_MAX_PEER_NETWORK_PATHS)&&(theirBestV6ByScope[s] != ZT_MAX_PEER_NETWORK_PATHS)) {
			mine = myBestV6ByScope[s];
			theirs = theirBestV6ByScope[s];
			break;
		}
		if ((myBestV4ByScope[s] != ZT_MAX_PEER_NETWORK_PATHS)&&(theirBestV4ByScope[s] != ZT_MAX_PEER_NETWORK_PATHS)) {
			mine = myBestV4ByScope[s];
			theirs = theirBestV4ByScope[s];
			break;
		}
	}

	if (mine != ZT_MAX_PEER_NETWORK_PATHS) {
		unsigned int alt = (unsigned int)RR->node->prng() & 1; // randomize which hint we send first for black magickal NAT-t reasons
		const unsigned int completed = alt + 2;
		while (alt != completed) {
			if ((alt & 1) == 0) {
				Packet outp(_id.address(),RR->identity.address(),Packet::VERB_RENDEZVOUS);
				outp.append((uint8_t)0);
				other->_id.address().appendTo(outp);
				outp.append((uint16_t)other->_paths[theirs].p->address().port());
				if (other->_paths[theirs].p->address().ss_family == AF_INET6) {
					outp.append((uint8_t)16);
					outp.append(other->_paths[theirs].p->address().rawIpData(),16);
				} else {
					outp.append((uint8_t)4);
					outp.append(other->_paths[theirs].p->address().rawIpData(),4);
				}
				outp.armor(_key,true);
				_paths[mine].p->send(RR,tPtr,outp.data(),outp.size(),now);
			} else {
				Packet outp(other->_id.address(),RR->identity.address(),Packet::VERB_RENDEZVOUS);
				outp.append((uint8_t)0);
				_id.address().appendTo(outp);
				outp.append((uint16_t)_paths[mine].p->address().port());
				if (_paths[mine].p->address().ss_family == AF_INET6) {
					outp.append((uint8_t)16);
					outp.append(_paths[mine].p->address().rawIpData(),16);
				} else {
					outp.append((uint8_t)4);
					outp.append(_paths[mine].p->address().rawIpData(),4);
				}
				outp.armor(other->_key,true);
				other->_paths[theirs].p->send(RR,tPtr,outp.data(),outp.size(),now);
			}
			++alt;
		}
	}
}

inline void Peer::processBackgroundPeerTasks(int64_t now)
{
	// Determine current multipath compatibility with other peer
	if ((now - _lastMultipathCompatibilityCheck) >= ZT_PATH_QUALITY_COMPUTE_INTERVAL) {
		// Cache number of available paths so that we can short-circuit multipath logic elsewhere
		//
		// We also take notice of duplicate paths (same IP only) because we may have
		// recently received a direct path push from a peer and our list might contain
		// a dead path which hasn't been fully recognized as such. In this case we
		// don't want the duplicate to trigger execution of multipath code prematurely.
		//
		// This is done to support the behavior of auto multipath enable/disable
		// without user intervention.
		int currAlivePathCount = 0;
		int duplicatePathsFound = 0;
		for (unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
			if (_paths[i].p) {
				currAlivePathCount++;
				for (unsigned int j=0;j<ZT_MAX_PEER_NETWORK_PATHS;++j) {
					if (_paths[i].p && _paths[j].p && _paths[i].p->address().ipsEqual2(_paths[j].p->address()) && i != j) {
						duplicatePathsFound+=1;
						break;
					}
				}
			}
		}
		_uniqueAlivePathCount = (currAlivePathCount - (duplicatePathsFound / 2));
		_lastMultipathCompatibilityCheck = now;
		_localMultipathSupported = ((RR->node->getMultipathMode() != ZT_MULTIPATH_NONE) && (ZT_PROTO_VERSION > 9));
		_remoteMultipathSupported = _vProto > 9;
		// If both peers support multipath and more than one path exist, we can use multipath logic
		_canUseMultipath = _localMultipathSupported && _remoteMultipathSupported && (_uniqueAlivePathCount > 1);
	}
}

void Peer::sendACK(void *tPtr,const SharedPtr<Path> &path,const int64_t localSocket,const InetAddress &atAddress,int64_t now)
{
	Packet outp(_id.address(),RR->identity.address(),Packet::VERB_ACK);
	uint32_t bytesToAck = path->bytesToAck();
	outp.append<uint32_t>(bytesToAck);
	if (atAddress) {
		outp.armor(_key,false);
		RR->node->putPacket(tPtr,localSocket,atAddress,outp.data(),outp.size());
	} else {
		RR->sw->send(tPtr,outp,false);
	}
	path->sentAck(now);
}

void Peer::sendQOS_MEASUREMENT(void *tPtr,const SharedPtr<Path> &path,const int64_t localSocket,const InetAddress &atAddress,int64_t now)
{
	const int64_t _now = RR->node->now();
	Packet outp(_id.address(),RR->identity.address(),Packet::VERB_QOS_MEASUREMENT);
	char qosData[ZT_PATH_MAX_QOS_PACKET_SZ];
	int16_t len = path->generateQoSPacket(_now,qosData);
	outp.append(qosData,len);
	if (atAddress) {
		outp.armor(_key,false);
		RR->node->putPacket(tPtr,localSocket,atAddress,outp.data(),outp.size());
	} else {
		RR->sw->send(tPtr,outp,false);
	}
	path->sentQoS(now);
}

void Peer::sendHELLO(void *tPtr,const int64_t localSocket,const InetAddress &atAddress,int64_t now)
{
	Packet outp(_id.address(),RR->identity.address(),Packet::VERB_HELLO);

	outp.append((unsigned char)ZT_PROTO_VERSION);
	outp.append((unsigned char)ZEROTIER_ONE_VERSION_MAJOR);
	outp.append((unsigned char)ZEROTIER_ONE_VERSION_MINOR);
	outp.append((uint16_t)ZEROTIER_ONE_VERSION_REVISION);
	outp.append(now);
	RR->identity.serialize(outp,false);
	atAddress.serialize(outp);

	outp.append((uint64_t)RR->topology->planetWorldId());
	outp.append((uint64_t)RR->topology->planetWorldTimestamp());

	const unsigned int startCryptedPortionAt = outp.size();

	std::vector<World> moons(RR->topology->moons());
	std::vector<uint64_t> moonsWanted(RR->topology->moonsWanted());
	outp.append((uint16_t)(moons.size() + moonsWanted.size()));
	for(std::vector<World>::const_iterator m(moons.begin());m!=moons.end();++m) {
		outp.append((uint8_t)m->type());
		outp.append((uint64_t)m->id());
		outp.append((uint64_t)m->timestamp());
	}
	for(std::vector<uint64_t>::const_iterator m(moonsWanted.begin());m!=moonsWanted.end();++m) {
		outp.append((uint8_t)World::TYPE_MOON);
		outp.append(*m);
		outp.append((uint64_t)0);
	}

	outp.cryptField(_key,startCryptedPortionAt,outp.size() - startCryptedPortionAt);

	RR->node->expectReplyTo(outp.packetId());

	if (atAddress) {
		outp.armor(_key,false); // false == don't encrypt full payload, but add MAC
		RR->node->putPacket(tPtr,localSocket,atAddress,outp.data(),outp.size());
	} else {
		RR->sw->send(tPtr,outp,false); // false == don't encrypt full payload, but add MAC
	}
}

void Peer::attemptToContactAt(void *tPtr,const int64_t localSocket,const InetAddress &atAddress,int64_t now,bool sendFullHello)
{
	if ( (!sendFullHello) && (_vProto >= 5) && (!((_vMajor == 1)&&(_vMinor == 1)&&(_vRevision == 0))) ) {
		Packet outp(_id.address(),RR->identity.address(),Packet::VERB_ECHO);
		RR->node->expectReplyTo(outp.packetId());
		outp.armor(_key,true);
		RR->node->putPacket(tPtr,localSocket,atAddress,outp.data(),outp.size());
	} else {
		sendHELLO(tPtr,localSocket,atAddress,now);
	}
}

void Peer::tryMemorizedPath(void *tPtr,int64_t now)
{
	if ((now - _lastTriedMemorizedPath) >= ZT_TRY_MEMORIZED_PATH_INTERVAL) {
		_lastTriedMemorizedPath = now;
		InetAddress mp;
		if (RR->node->externalPathLookup(tPtr,_id.address(),-1,mp))
			attemptToContactAt(tPtr,-1,mp,now,true);
	}
}

unsigned int Peer::doPingAndKeepalive(void *tPtr,int64_t now)
{
	unsigned int sent = 0;
	Mutex::Lock _l(_paths_m);

	const bool sendFullHello = ((now - _lastSentFullHello) >= ZT_PEER_PING_PERIOD);
	_lastSentFullHello = now;

	processBackgroundPeerTasks(now);

	// Emit traces regarding aggregate link status
	if (_canUseMultipath) {
		int alivePathCount = aggregateLinkPhysicalPathCount();
		if ((now - _lastAggregateStatsReport) > ZT_PATH_AGGREGATE_STATS_REPORT_INTERVAL) {
			_lastAggregateStatsReport = now;
			if (alivePathCount) {
				RR->t->peerLinkAggregateStatistics(NULL,*this);
			}
		} if (alivePathCount < 2 && _linkIsRedundant) {
			_linkIsRedundant = !_linkIsRedundant;
			RR->t->peerLinkNoLongerRedundant(NULL,*this);
		} if (alivePathCount > 1 && !_linkIsRedundant) {
			_linkIsRedundant = !_linkIsRedundant;
			RR->t->peerLinkNowRedundant(NULL,*this);
		}
	}

	// Right now we only keep pinging links that have the maximum priority. The
	// priority is used to track cluster redirections, meaning that when a cluster
	// redirects us its redirect target links override all other links and we
	// let those old links expire.
	long maxPriority = 0;
	for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
		if (_paths[i].p)
			maxPriority = std::max(_paths[i].priority,maxPriority);
		else break;
	}

	unsigned int j = 0;
	for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
		if (_paths[i].p) {
			// Clean expired and reduced priority paths
			if ( ((now - _paths[i].lr) < ZT_PEER_PATH_EXPIRATION) && (_paths[i].priority == maxPriority) ) {
				if ((sendFullHello)||(_paths[i].p->needsHeartbeat(now))) {
					attemptToContactAt(tPtr,_paths[i].p->localSocket(),_paths[i].p->address(),now,sendFullHello);
					_paths[i].p->sent(now);
					sent |= (_paths[i].p->address().ss_family == AF_INET) ? 0x1 : 0x2;
				}
				if (i != j)
					_paths[j] = _paths[i];
				++j;
			}
		} else break;
	}
	if (canUseMultipath()) {
		while(j < ZT_MAX_PEER_NETWORK_PATHS) {
			_paths[j].lr = 0;
			_paths[j].p.zero();
			_paths[j].priority = 1;
			++j;
		}
	}
	return sent;
}

void Peer::clusterRedirect(void *tPtr,const SharedPtr<Path> &originatingPath,const InetAddress &remoteAddress,const int64_t now)
{
	SharedPtr<Path> np(RR->topology->getPath(originatingPath->localSocket(),remoteAddress));
	RR->t->peerRedirected(tPtr,0,*this,np);

	attemptToContactAt(tPtr,originatingPath->localSocket(),remoteAddress,now,true);

	{
		Mutex::Lock _l(_paths_m);

		// New priority is higher than the priority of the originating path (if known)
		long newPriority = 1;
		for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
			if (_paths[i].p) {
				if (_paths[i].p == originatingPath) {
					newPriority = _paths[i].priority;
					break;
				}
			} else break;
		}
		newPriority += 2;

		// Erase any paths with lower priority than this one or that are duplicate
		// IPs and add this path.
		unsigned int j = 0;
		for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
			if (_paths[i].p) {
				if ((_paths[i].priority >= newPriority)&&(!_paths[i].p->address().ipsEqual2(remoteAddress))) {
					if (i != j)
						_paths[j] = _paths[i];
					++j;
				}
			}
		}
		if (j < ZT_MAX_PEER_NETWORK_PATHS) {
			_paths[j].lr = now;
			_paths[j].p = np;
			_paths[j].priority = newPriority;
			++j;
			while (j < ZT_MAX_PEER_NETWORK_PATHS) {
				_paths[j].lr = 0;
				_paths[j].p.zero();
				_paths[j].priority = 1;
				++j;
			}
		}
	}
}

void Peer::resetWithinScope(void *tPtr,InetAddress::IpScope scope,int inetAddressFamily,int64_t now)
{
	Mutex::Lock _l(_paths_m);
	for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
		if (_paths[i].p) {
			if ((_paths[i].p->address().ss_family == inetAddressFamily)&&(_paths[i].p->ipScope() == scope)) {
				attemptToContactAt(tPtr,_paths[i].p->localSocket(),_paths[i].p->address(),now,false);
				_paths[i].p->sent(now);
				_paths[i].lr = 0; // path will not be used unless it speaks again
			}
		} else break;
	}
}

} // namespace ZeroTier