summaryrefslogtreecommitdiff
path: root/node/Salsa20.cpp
blob: de8f1569fb81dd0fd56f42df2e70665b7bd82326 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
/*
 * Based on public domain code available at: http://cr.yp.to/snuffle.html
 *
 * Modifications and C-native SSE macro based SSE implementation by
 * Adam Ierymenko <adam.ierymenko@zerotier.com>.
 *
 * Since the original was public domain, this is too.
 */

#include "Constants.hpp"
#include "Salsa20.hpp"

#define ROTATE(v,c) (((v) << (c)) | ((v) >> (32 - (c))))
#define XOR(v,w) ((v) ^ (w))
#define PLUS(v,w) ((uint32_t)((v) + (w)))

// Set up laod/store macros with appropriate endianness (we don't use these in SSE mode)
#ifndef ZT_SALSA20_SSE

#if __BYTE_ORDER == __LITTLE_ENDIAN

#ifdef ZT_NO_TYPE_PUNNING
// Slower version that does not use type punning
#define U8TO32_LITTLE(p) ( ((uint32_t)(p)[0]) | ((uint32_t)(p)[1] << 8) | ((uint32_t)(p)[2] << 16) | ((uint32_t)(p)[3] << 24) )
static inline void U32TO8_LITTLE(uint8_t *const c,const uint32_t v) { c[0] = (uint8_t)v; c[1] = (uint8_t)(v >> 8); c[2] = (uint8_t)(v >> 16); c[3] = (uint8_t)(v >> 24); }
#else
// Fast version that just does 32-bit load/store
#define U8TO32_LITTLE(p) (*((const uint32_t *)((const void *)(p))))
#define U32TO8_LITTLE(c,v) *((uint32_t *)((void *)(c))) = (v)
#endif // ZT_NO_TYPE_PUNNING

#else // __BYTE_ORDER == __BIG_ENDIAN (we don't support anything else... does MIDDLE_ENDIAN even still exist?)

#ifdef __GNUC__

// Use GNUC builtin bswap macros on big-endian machines if available
#define U8TO32_LITTLE(p) __builtin_bswap32(*((const uint32_t *)((const void *)(p))))
#define U32TO8_LITTLE(c,v) *((uint32_t *)((void *)(c))) = __builtin_bswap32((v))

#else // no __GNUC__

// Otherwise do it the slow, manual way on BE machines
#define U8TO32_LITTLE(p) ( ((uint32_t)(p)[0]) | ((uint32_t)(p)[1] << 8) | ((uint32_t)(p)[2] << 16) | ((uint32_t)(p)[3] << 24) )
static inline void U32TO8_LITTLE(uint8_t *const c,const uint32_t v) { c[0] = (uint8_t)v; c[1] = (uint8_t)(v >> 8); c[2] = (uint8_t)(v >> 16); c[3] = (uint8_t)(v >> 24); }

#endif // __GNUC__ or not

#endif // __BYTE_ORDER little or big?

#endif // !ZT_SALSA20_SSE

// Statically compute and define SSE constants
#ifdef ZT_SALSA20_SSE
class _s20sseconsts
{
public:
	_s20sseconsts()
	{
		maskLo32 = _mm_shuffle_epi32(_mm_cvtsi32_si128(-1), _MM_SHUFFLE(1, 0, 1, 0));
		maskHi32 = _mm_slli_epi64(maskLo32, 32);
	}
	__m128i maskLo32,maskHi32;
};
static const _s20sseconsts _S20SSECONSTANTS;
#endif

namespace ZeroTier {

void Salsa20::init(const void *key,unsigned int kbits,const void *iv,unsigned int rounds)
	throw()
{
#ifdef ZT_SALSA20_SSE
	const uint32_t *k = (const uint32_t *)key;

	_state.i[0] = 0x61707865;
	_state.i[3] = 0x6b206574;
	_state.i[13] = k[0];
	_state.i[10] = k[1];
	_state.i[7] = k[2];
	_state.i[4] = k[3];
	if (kbits == 256) {
		k += 4;
		_state.i[1] = 0x3320646e;
		_state.i[2] = 0x79622d32;
	} else {
		_state.i[1] = 0x3120646e;
		_state.i[2] = 0x79622d36;
	}
	_state.i[15] = k[0];
	_state.i[12] = k[1];
	_state.i[9] = k[2];
	_state.i[6] = k[3];
	_state.i[14] = ((const uint32_t *)iv)[0];
	_state.i[11] = ((const uint32_t *)iv)[1];
	_state.i[5] = 0;
	_state.i[8] = 0;
#else
	const char *constants;
	const uint8_t *k = (const uint8_t *)key;

	_state.i[1] = U8TO32_LITTLE(k + 0);
	_state.i[2] = U8TO32_LITTLE(k + 4);
	_state.i[3] = U8TO32_LITTLE(k + 8);
	_state.i[4] = U8TO32_LITTLE(k + 12);
	if (kbits == 256) { /* recommended */
		k += 16;
		constants = "expand 32-byte k";
	} else { /* kbits == 128 */
		constants = "expand 16-byte k";
	}
	_state.i[5] = U8TO32_LITTLE(constants + 4);
	_state.i[6] = U8TO32_LITTLE(((const uint8_t *)iv) + 0);
	_state.i[7] = U8TO32_LITTLE(((const uint8_t *)iv) + 4);
	_state.i[8] = 0;
	_state.i[9] = 0;
	_state.i[10] = U8TO32_LITTLE(constants + 8);
	_state.i[11] = U8TO32_LITTLE(k + 0);
	_state.i[12] = U8TO32_LITTLE(k + 4);
	_state.i[13] = U8TO32_LITTLE(k + 8);
	_state.i[14] = U8TO32_LITTLE(k + 12);
	_state.i[15] = U8TO32_LITTLE(constants + 12);
	_state.i[0] = U8TO32_LITTLE(constants + 0);
#endif

	_roundsDiv2 = rounds / 2;
}

void Salsa20::encrypt(const void *in,void *out,unsigned int bytes)
	throw()
{
	uint8_t tmp[64];
	const uint8_t *m = (const uint8_t *)in;
	uint8_t *c = (uint8_t *)out;
	uint8_t *ctarget = c;
	unsigned int i;

#ifndef ZT_SALSA20_SSE
	uint32_t x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15;
	uint32_t j0, j1, j2, j3, j4, j5, j6, j7, j8, j9, j10, j11, j12, j13, j14, j15;
#endif

	if (!bytes)
		return;

#ifndef ZT_SALSA20_SSE
	j0 = _state.i[0];
	j1 = _state.i[1];
	j2 = _state.i[2];
	j3 = _state.i[3];
	j4 = _state.i[4];
	j5 = _state.i[5];
	j6 = _state.i[6];
	j7 = _state.i[7];
	j8 = _state.i[8];
	j9 = _state.i[9];
	j10 = _state.i[10];
	j11 = _state.i[11];
	j12 = _state.i[12];
	j13 = _state.i[13];
	j14 = _state.i[14];
	j15 = _state.i[15];
#endif

	for (;;) {
		if (bytes < 64) {
			for (i = 0;i < bytes;++i)
				tmp[i] = m[i];
			m = tmp;
			ctarget = c;
			c = tmp;
		}

#ifdef ZT_SALSA20_SSE
		__m128i X0 = _mm_loadu_si128((const __m128i *)&(_state.v[0]));
		__m128i X1 = _mm_loadu_si128((const __m128i *)&(_state.v[1]));
		__m128i X2 = _mm_loadu_si128((const __m128i *)&(_state.v[2]));
		__m128i X3 = _mm_loadu_si128((const __m128i *)&(_state.v[3]));
		__m128i X0s = X0;
		__m128i X1s = X1;
		__m128i X2s = X2;
		__m128i X3s = X3;

		for (i=0;i<_roundsDiv2;++i) {
			__m128i T = _mm_add_epi32(X0, X3);
			X1 = _mm_xor_si128(X1, _mm_slli_epi32(T, 7));
			X1 = _mm_xor_si128(X1, _mm_srli_epi32(T, 25));
			T = _mm_add_epi32(X1, X0);
			X2 = _mm_xor_si128(X2, _mm_slli_epi32(T, 9));
			X2 = _mm_xor_si128(X2, _mm_srli_epi32(T, 23));
			T = _mm_add_epi32(X2, X1);
			X3 = _mm_xor_si128(X3, _mm_slli_epi32(T, 13));
			X3 = _mm_xor_si128(X3, _mm_srli_epi32(T, 19));
			T = _mm_add_epi32(X3, X2);
			X0 = _mm_xor_si128(X0, _mm_slli_epi32(T, 18));
			X0 = _mm_xor_si128(X0, _mm_srli_epi32(T, 14));

			X1 = _mm_shuffle_epi32(X1, 0x93);
			X2 = _mm_shuffle_epi32(X2, 0x4E);
			X3 = _mm_shuffle_epi32(X3, 0x39);

			T = _mm_add_epi32(X0, X1);
			X3 = _mm_xor_si128(X3, _mm_slli_epi32(T, 7));
			X3 = _mm_xor_si128(X3, _mm_srli_epi32(T, 25));
			T = _mm_add_epi32(X3, X0);
			X2 = _mm_xor_si128(X2, _mm_slli_epi32(T, 9));
			X2 = _mm_xor_si128(X2, _mm_srli_epi32(T, 23));
			T = _mm_add_epi32(X2, X3);
			X1 = _mm_xor_si128(X1, _mm_slli_epi32(T, 13));
			X1 = _mm_xor_si128(X1, _mm_srli_epi32(T, 19));
			T = _mm_add_epi32(X1, X2);
			X0 = _mm_xor_si128(X0, _mm_slli_epi32(T, 18));
			X0 = _mm_xor_si128(X0, _mm_srli_epi32(T, 14));

			X1 = _mm_shuffle_epi32(X1, 0x39);
			X2 = _mm_shuffle_epi32(X2, 0x4E);
			X3 = _mm_shuffle_epi32(X3, 0x93);
		}

		X0 = _mm_add_epi32(X0s,X0);
		X1 = _mm_add_epi32(X1s,X1);
		X2 = _mm_add_epi32(X2s,X2);
		X3 = _mm_add_epi32(X3s,X3);

		{
			__m128i k02 = _mm_or_si128(_mm_slli_epi64(X0, 32), _mm_srli_epi64(X3, 32));
			k02 = _mm_shuffle_epi32(k02, _MM_SHUFFLE(0, 1, 2, 3));
			__m128i k13 = _mm_or_si128(_mm_slli_epi64(X1, 32), _mm_srli_epi64(X0, 32));
			k13 = _mm_shuffle_epi32(k13, _MM_SHUFFLE(0, 1, 2, 3));
			__m128i k20 = _mm_or_si128(_mm_and_si128(X2, _S20SSECONSTANTS.maskLo32), _mm_and_si128(X1, _S20SSECONSTANTS.maskHi32));
			__m128i k31 = _mm_or_si128(_mm_and_si128(X3, _S20SSECONSTANTS.maskLo32), _mm_and_si128(X2, _S20SSECONSTANTS.maskHi32));

			const float *const mv = (const float *)m;
			float *const cv = (float *)c;

			_mm_storeu_ps(cv,_mm_castsi128_ps(_mm_xor_si128(_mm_unpackhi_epi64(k02,k20),_mm_castps_si128(_mm_loadu_ps(mv)))));
			_mm_storeu_ps(cv + 4,_mm_castsi128_ps(_mm_xor_si128(_mm_unpackhi_epi64(k13,k31),_mm_castps_si128(_mm_loadu_ps(mv + 4)))));
			_mm_storeu_ps(cv + 8,_mm_castsi128_ps(_mm_xor_si128(_mm_unpacklo_epi64(k20,k02),_mm_castps_si128(_mm_loadu_ps(mv + 8)))));
			_mm_storeu_ps(cv + 12,_mm_castsi128_ps(_mm_xor_si128(_mm_unpacklo_epi64(k31,k13),_mm_castps_si128(_mm_loadu_ps(mv + 12)))));
		}

		if (!(++_state.i[8])) {
			++_state.i[5]; // state reordered for SSE
			/* stopping at 2^70 bytes per nonce is user's responsibility */
		}
#else
		x0 = j0;
		x1 = j1;
		x2 = j2;
		x3 = j3;
		x4 = j4;
		x5 = j5;
		x6 = j6;
		x7 = j7;
		x8 = j8;
		x9 = j9;
		x10 = j10;
		x11 = j11;
		x12 = j12;
		x13 = j13;
		x14 = j14;
		x15 = j15;

		for(i=0;i<_roundsDiv2;++i) {
			 x4 = XOR( x4,ROTATE(PLUS( x0,x12), 7));
			 x8 = XOR( x8,ROTATE(PLUS( x4, x0), 9));
			x12 = XOR(x12,ROTATE(PLUS( x8, x4),13));
			 x0 = XOR( x0,ROTATE(PLUS(x12, x8),18));
			 x9 = XOR( x9,ROTATE(PLUS( x5, x1), 7));
			x13 = XOR(x13,ROTATE(PLUS( x9, x5), 9));
			 x1 = XOR( x1,ROTATE(PLUS(x13, x9),13));
			 x5 = XOR( x5,ROTATE(PLUS( x1,x13),18));
			x14 = XOR(x14,ROTATE(PLUS(x10, x6), 7));
			 x2 = XOR( x2,ROTATE(PLUS(x14,x10), 9));
			 x6 = XOR( x6,ROTATE(PLUS( x2,x14),13));
			x10 = XOR(x10,ROTATE(PLUS( x6, x2),18));
			 x3 = XOR( x3,ROTATE(PLUS(x15,x11), 7));
			 x7 = XOR( x7,ROTATE(PLUS( x3,x15), 9));
			x11 = XOR(x11,ROTATE(PLUS( x7, x3),13));
			x15 = XOR(x15,ROTATE(PLUS(x11, x7),18));
			 x1 = XOR( x1,ROTATE(PLUS( x0, x3), 7));
			 x2 = XOR( x2,ROTATE(PLUS( x1, x0), 9));
			 x3 = XOR( x3,ROTATE(PLUS( x2, x1),13));
			 x0 = XOR( x0,ROTATE(PLUS( x3, x2),18));
			 x6 = XOR( x6,ROTATE(PLUS( x5, x4), 7));
			 x7 = XOR( x7,ROTATE(PLUS( x6, x5), 9));
			 x4 = XOR( x4,ROTATE(PLUS( x7, x6),13));
			 x5 = XOR( x5,ROTATE(PLUS( x4, x7),18));
			x11 = XOR(x11,ROTATE(PLUS(x10, x9), 7));
			 x8 = XOR( x8,ROTATE(PLUS(x11,x10), 9));
			 x9 = XOR( x9,ROTATE(PLUS( x8,x11),13));
			x10 = XOR(x10,ROTATE(PLUS( x9, x8),18));
			x12 = XOR(x12,ROTATE(PLUS(x15,x14), 7));
			x13 = XOR(x13,ROTATE(PLUS(x12,x15), 9));
			x14 = XOR(x14,ROTATE(PLUS(x13,x12),13));
			x15 = XOR(x15,ROTATE(PLUS(x14,x13),18));
		}

		x0 = PLUS(x0,j0);
		x1 = PLUS(x1,j1);
		x2 = PLUS(x2,j2);
		x3 = PLUS(x3,j3);
		x4 = PLUS(x4,j4);
		x5 = PLUS(x5,j5);
		x6 = PLUS(x6,j6);
		x7 = PLUS(x7,j7);
		x8 = PLUS(x8,j8);
		x9 = PLUS(x9,j9);
		x10 = PLUS(x10,j10);
		x11 = PLUS(x11,j11);
		x12 = PLUS(x12,j12);
		x13 = PLUS(x13,j13);
		x14 = PLUS(x14,j14);
		x15 = PLUS(x15,j15);

		U32TO8_LITTLE(c + 0,XOR(x0,U8TO32_LITTLE(m + 0)));
		U32TO8_LITTLE(c + 4,XOR(x1,U8TO32_LITTLE(m + 4)));
		U32TO8_LITTLE(c + 8,XOR(x2,U8TO32_LITTLE(m + 8)));
		U32TO8_LITTLE(c + 12,XOR(x3,U8TO32_LITTLE(m + 12)));
		U32TO8_LITTLE(c + 16,XOR(x4,U8TO32_LITTLE(m + 16)));
		U32TO8_LITTLE(c + 20,XOR(x5,U8TO32_LITTLE(m + 20)));
		U32TO8_LITTLE(c + 24,XOR(x6,U8TO32_LITTLE(m + 24)));
		U32TO8_LITTLE(c + 28,XOR(x7,U8TO32_LITTLE(m + 28)));
		U32TO8_LITTLE(c + 32,XOR(x8,U8TO32_LITTLE(m + 32)));
		U32TO8_LITTLE(c + 36,XOR(x9,U8TO32_LITTLE(m + 36)));
		U32TO8_LITTLE(c + 40,XOR(x10,U8TO32_LITTLE(m + 40)));
		U32TO8_LITTLE(c + 44,XOR(x11,U8TO32_LITTLE(m + 44)));
		U32TO8_LITTLE(c + 48,XOR(x12,U8TO32_LITTLE(m + 48)));
		U32TO8_LITTLE(c + 52,XOR(x13,U8TO32_LITTLE(m + 52)));
		U32TO8_LITTLE(c + 56,XOR(x14,U8TO32_LITTLE(m + 56)));
		U32TO8_LITTLE(c + 60,XOR(x15,U8TO32_LITTLE(m + 60)));

		if (!(++j8)) {
			++j9;
			/* stopping at 2^70 bytes per nonce is user's responsibility */
		}
#endif

		if (bytes <= 64) {
			if (bytes < 64) {
				for (i = 0;i < bytes;++i)
					ctarget[i] = c[i];
			}

#ifndef ZT_SALSA20_SSE
			_state.i[8] = j8;
			_state.i[9] = j9;
#endif

			return;
		}

		bytes -= 64;
		c += 64;
		m += 64;
	}
}

} // namespace ZeroTier