summaryrefslogtreecommitdiff
path: root/node/SelfAwareness.cpp
blob: 8bed0c511118981150a134fe8da998ce30621f2f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
/*
 * ZeroTier One - Network Virtualization Everywhere
 * Copyright (C) 2011-2016  ZeroTier, Inc.  https://www.zerotier.com/
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <set>
#include <vector>

#include "Constants.hpp"
#include "SelfAwareness.hpp"
#include "RuntimeEnvironment.hpp"
#include "Node.hpp"
#include "Topology.hpp"
#include "Packet.hpp"
#include "Peer.hpp"
#include "Switch.hpp"

// Entry timeout -- make it fairly long since this is just to prevent stale buildup
#define ZT_SELFAWARENESS_ENTRY_TIMEOUT 3600000

namespace ZeroTier {

class _ResetWithinScope
{
public:
	_ResetWithinScope(uint64_t now,InetAddress::IpScope scope) :
		_now(now),
		_scope(scope) {}

	inline void operator()(Topology &t,const SharedPtr<Peer> &p)
	{
		if (p->resetWithinScope(_scope,_now))
			peersReset.push_back(p);
	}

	std::vector< SharedPtr<Peer> > peersReset;

private:
	uint64_t _now;
	InetAddress::IpScope _scope;
};

SelfAwareness::SelfAwareness(const RuntimeEnvironment *renv) :
	RR(renv),
	_phy(32)
{
}

SelfAwareness::~SelfAwareness()
{
}

void SelfAwareness::iam(const Address &reporter,const InetAddress &receivedOnLocalAddress,const InetAddress &reporterPhysicalAddress,const InetAddress &myPhysicalAddress,bool trusted,uint64_t now)
{
	const InetAddress::IpScope scope = myPhysicalAddress.ipScope();

	if ((scope != reporterPhysicalAddress.ipScope())||(scope == InetAddress::IP_SCOPE_NONE)||(scope == InetAddress::IP_SCOPE_LOOPBACK)||(scope == InetAddress::IP_SCOPE_MULTICAST))
		return;

	Mutex::Lock _l(_phy_m);
	PhySurfaceEntry &entry = _phy[PhySurfaceKey(reporter,receivedOnLocalAddress,reporterPhysicalAddress,scope)];

	if ( (trusted) && ((now - entry.ts) < ZT_SELFAWARENESS_ENTRY_TIMEOUT) && (!entry.mySurface.ipsEqual(myPhysicalAddress)) ) {
		// Changes to external surface reported by trusted peers causes path reset in this scope
		entry.mySurface = myPhysicalAddress;
		entry.ts = now;
		TRACE("physical address %s for scope %u as seen from %s(%s) differs from %s, resetting paths in scope",myPhysicalAddress.toString().c_str(),(unsigned int)scope,reporter.toString().c_str(),reporterPhysicalAddress.toString().c_str(),entry.mySurface.toString().c_str());

		// Erase all entries in this scope that were not reported from this remote address to prevent 'thrashing'
		// due to multiple reports of endpoint change.
		// Don't use 'entry' after this since hash table gets modified.
		{
			Hashtable< PhySurfaceKey,PhySurfaceEntry >::Iterator i(_phy);
			PhySurfaceKey *k = (PhySurfaceKey *)0;
			PhySurfaceEntry *e = (PhySurfaceEntry *)0;
			while (i.next(k,e)) {
				if ((k->reporterPhysicalAddress != reporterPhysicalAddress)&&(k->scope == scope))
					_phy.erase(*k);
			}
		}

		// Reset all paths within this scope
		_ResetWithinScope rset(now,(InetAddress::IpScope)scope);
		RR->topology->eachPeer<_ResetWithinScope &>(rset);

		// Send a NOP to all peers for whom we forgot a path. This will cause direct
		// links to be re-established if possible, possibly using a root server or some
		// other relay.
		for(std::vector< SharedPtr<Peer> >::const_iterator p(rset.peersReset.begin());p!=rset.peersReset.end();++p) {
			if ((*p)->activelyTransferringFrames(now)) {
				Packet outp((*p)->address(),RR->identity.address(),Packet::VERB_NOP);
				RR->sw->send(outp,true,0);
			}
		}
	} else {
		// Otherwise just update DB to use to determine external surface info
		entry.mySurface = myPhysicalAddress;
		entry.ts = now;
	}
}

void SelfAwareness::clean(uint64_t now)
{
	Mutex::Lock _l(_phy_m);
	Hashtable< PhySurfaceKey,PhySurfaceEntry >::Iterator i(_phy);
	PhySurfaceKey *k = (PhySurfaceKey *)0;
	PhySurfaceEntry *e = (PhySurfaceEntry *)0;
	while (i.next(k,e)) {
		if ((now - e->ts) >= ZT_SELFAWARENESS_ENTRY_TIMEOUT)
			_phy.erase(*k);
	}
}

std::vector<InetAddress> SelfAwareness::getSymmetricNatPredictions()
{
	/* This is based on ideas and strategies found here:
	 * https://tools.ietf.org/html/draft-takeda-symmetric-nat-traversal-00
	 *
	 * In short: a great many symmetric NATs allocate ports sequentially.
	 * This is common on enterprise and carrier grade NATs as well as consumer
	 * devices. This code generates a list of "you might try this" addresses by
	 * extrapolating likely port assignments from currently known external
	 * global IPv4 surfaces. These can then be included in a PUSH_DIRECT_PATHS
	 * message to another peer, causing it to possibly try these addresses and
	 * bust our local symmetric NAT. It works often enough to be worth the
	 * extra bit of code and does no harm in cases where it fails. */

	// Gather unique surfaces indexed by local received-on address and flag
	// us as behind a symmetric NAT if there is more than one.
	std::map< InetAddress,std::set<InetAddress> > surfaces;
	bool symmetric = false;
	{
		Mutex::Lock _l(_phy_m);
		Hashtable< PhySurfaceKey,PhySurfaceEntry >::Iterator i(_phy);
		PhySurfaceKey *k = (PhySurfaceKey *)0;
		PhySurfaceEntry *e = (PhySurfaceEntry *)0;
		while (i.next(k,e)) {
			if ((e->mySurface.ss_family == AF_INET)&&(e->mySurface.ipScope() == InetAddress::IP_SCOPE_GLOBAL)) {
				std::set<InetAddress> &s = surfaces[k->receivedOnLocalAddress];
				s.insert(e->mySurface);
				symmetric = symmetric||(s.size() > 1);
			}
		}
	}

	// If we appear to be symmetrically NATed, generate and return extrapolations
	// of those surfaces. Since PUSH_DIRECT_PATHS is sent multiple times, we
	// probabilistically generate extrapolations of anywhere from +1 to +5 to
	// increase the odds that it will work "eventually".
	if (symmetric) {
		std::vector<InetAddress> r;
		for(std::map< InetAddress,std::set<InetAddress> >::iterator si(surfaces.begin());si!=surfaces.end();++si) {
			for(std::set<InetAddress>::iterator i(si->second.begin());i!=si->second.end();++i) {
				InetAddress ipp(*i);
				unsigned int p = ipp.port() + 1 + ((unsigned int)RR->node->prng() & 3);
				if (p >= 65535)
					p -= 64510; // NATs seldom use ports <=1024 so wrap to 1025
				ipp.setPort(p);
				if ((si->second.count(ipp) == 0)&&(std::find(r.begin(),r.end(),ipp) == r.end())) {
					r.push_back(ipp);
				}
			}
		}
		return r;
	}

	return std::vector<InetAddress>();
}

} // namespace ZeroTier