summaryrefslogtreecommitdiff
path: root/node/SelfAwareness.cpp
blob: cba84cdcb09d29fb19458bab2fc18b777e620a3d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
/*
 * ZeroTier One - Network Virtualization Everywhere
 * Copyright (C) 2011-2016  ZeroTier, Inc.  https://www.zerotier.com/
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <set>
#include <vector>

#include "Constants.hpp"
#include "SelfAwareness.hpp"
#include "RuntimeEnvironment.hpp"
#include "Node.hpp"
#include "Topology.hpp"
#include "Packet.hpp"
#include "Peer.hpp"
#include "Switch.hpp"

// Entry timeout -- make it fairly long since this is just to prevent stale buildup
#define ZT_SELFAWARENESS_ENTRY_TIMEOUT 600000

namespace ZeroTier {

class _ResetWithinScope
{
public:
	_ResetWithinScope(void *tPtr,uint64_t now,int inetAddressFamily,InetAddress::IpScope scope) :
		_now(now),
		_tPtr(tPtr),
		_family(inetAddressFamily),
		_scope(scope) {}

	inline void operator()(Topology &t,const SharedPtr<Peer> &p) { p->resetWithinScope(_tPtr,_scope,_family,_now); }

private:
	uint64_t _now;
	void *_tPtr;
	int _family;
	InetAddress::IpScope _scope;
};

SelfAwareness::SelfAwareness(const RuntimeEnvironment *renv) :
	RR(renv),
	_phy(128)
{
}

void SelfAwareness::iam(void *tPtr,const Address &reporter,const InetAddress &receivedOnLocalAddress,const InetAddress &reporterPhysicalAddress,const InetAddress &myPhysicalAddress,bool trusted,uint64_t now)
{
	const InetAddress::IpScope scope = myPhysicalAddress.ipScope();

	if ((scope != reporterPhysicalAddress.ipScope())||(scope == InetAddress::IP_SCOPE_NONE)||(scope == InetAddress::IP_SCOPE_LOOPBACK)||(scope == InetAddress::IP_SCOPE_MULTICAST))
		return;

	Mutex::Lock _l(_phy_m);
	PhySurfaceEntry &entry = _phy[PhySurfaceKey(reporter,receivedOnLocalAddress,reporterPhysicalAddress,scope)];

	if ( (trusted) && ((now - entry.ts) < ZT_SELFAWARENESS_ENTRY_TIMEOUT) && (!entry.mySurface.ipsEqual(myPhysicalAddress)) ) {
		// Changes to external surface reported by trusted peers causes path reset in this scope
		TRACE("physical address %s for scope %u as seen from %s(%s) differs from %s, resetting paths in scope",myPhysicalAddress.toString().c_str(),(unsigned int)scope,reporter.toString().c_str(),reporterPhysicalAddress.toString().c_str(),entry.mySurface.toString().c_str());

		entry.mySurface = myPhysicalAddress;
		entry.ts = now;
		entry.trusted = trusted;

		// Erase all entries in this scope that were not reported from this remote address to prevent 'thrashing'
		// due to multiple reports of endpoint change.
		// Don't use 'entry' after this since hash table gets modified.
		{
			Hashtable< PhySurfaceKey,PhySurfaceEntry >::Iterator i(_phy);
			PhySurfaceKey *k = (PhySurfaceKey *)0;
			PhySurfaceEntry *e = (PhySurfaceEntry *)0;
			while (i.next(k,e)) {
				if ((k->reporterPhysicalAddress != reporterPhysicalAddress)&&(k->scope == scope))
					_phy.erase(*k);
			}
		}

		// Reset all paths within this scope and address family
		_ResetWithinScope rset(tPtr,now,myPhysicalAddress.ss_family,(InetAddress::IpScope)scope);
		RR->topology->eachPeer<_ResetWithinScope &>(rset);
	} else {
		// Otherwise just update DB to use to determine external surface info
		entry.mySurface = myPhysicalAddress;
		entry.ts = now;
		entry.trusted = trusted;
	}
}

void SelfAwareness::clean(uint64_t now)
{
	Mutex::Lock _l(_phy_m);
	Hashtable< PhySurfaceKey,PhySurfaceEntry >::Iterator i(_phy);
	PhySurfaceKey *k = (PhySurfaceKey *)0;
	PhySurfaceEntry *e = (PhySurfaceEntry *)0;
	while (i.next(k,e)) {
		if ((now - e->ts) >= ZT_SELFAWARENESS_ENTRY_TIMEOUT)
			_phy.erase(*k);
	}
}

std::vector<InetAddress> SelfAwareness::getSymmetricNatPredictions()
{
	/* This is based on ideas and strategies found here:
	 * https://tools.ietf.org/html/draft-takeda-symmetric-nat-traversal-00
	 *
	 * For each IP address reported by a trusted (upstream) peer, we find
	 * the external port most recently reported by ANY peer for that IP.
	 *
	 * We only do any of this for global IPv4 addresses since private IPs
	 * and IPv6 are not going to have symmetric NAT.
	 *
	 * SECURITY NOTE:
	 *
	 * We never use IPs reported by non-trusted peers, since this could lead
	 * to a minor vulnerability whereby a peer could poison our cache with
	 * bad external surface reports via OK(HELLO) and then possibly coax us
	 * into suggesting their IP to other peers via PUSH_DIRECT_PATHS. This
	 * in turn could allow them to MITM flows.
	 *
	 * Since flows are encrypted and authenticated they could not actually
	 * read or modify traffic, but they could gather meta-data for forensics
	 * purpsoes or use this as a DOS attack vector. */

	std::map< uint32_t,std::pair<uint64_t,unsigned int> > maxPortByIp;
	InetAddress theOneTrueSurface;
	bool symmetric = false;
	{
		Mutex::Lock _l(_phy_m);

		{	// First get IPs from only trusted peers, and perform basic NAT type characterization
			Hashtable< PhySurfaceKey,PhySurfaceEntry >::Iterator i(_phy);
			PhySurfaceKey *k = (PhySurfaceKey *)0;
			PhySurfaceEntry *e = (PhySurfaceEntry *)0;
			while (i.next(k,e)) {
				if ((e->trusted)&&(e->mySurface.ss_family == AF_INET)&&(e->mySurface.ipScope() == InetAddress::IP_SCOPE_GLOBAL)) {
					if (!theOneTrueSurface)
						theOneTrueSurface = e->mySurface;
					else if (theOneTrueSurface != e->mySurface)
						symmetric = true;
					maxPortByIp[reinterpret_cast<const struct sockaddr_in *>(&(e->mySurface))->sin_addr.s_addr] = std::pair<uint64_t,unsigned int>(e->ts,e->mySurface.port());
				}
			}
		}

		{	// Then find max port per IP from a trusted peer
			Hashtable< PhySurfaceKey,PhySurfaceEntry >::Iterator i(_phy);
			PhySurfaceKey *k = (PhySurfaceKey *)0;
			PhySurfaceEntry *e = (PhySurfaceEntry *)0;
			while (i.next(k,e)) {
				if ((e->mySurface.ss_family == AF_INET)&&(e->mySurface.ipScope() == InetAddress::IP_SCOPE_GLOBAL)) {
					std::map< uint32_t,std::pair<uint64_t,unsigned int> >::iterator mp(maxPortByIp.find(reinterpret_cast<const struct sockaddr_in *>(&(e->mySurface))->sin_addr.s_addr));
					if ((mp != maxPortByIp.end())&&(mp->second.first < e->ts)) {
						mp->second.first = e->ts;
						mp->second.second = e->mySurface.port();
					}
				}
			}
		}
	}

	if (symmetric) {
		std::vector<InetAddress> r;
		for(unsigned int k=1;k<=3;++k) {
			for(std::map< uint32_t,std::pair<uint64_t,unsigned int> >::iterator i(maxPortByIp.begin());i!=maxPortByIp.end();++i) {
				unsigned int p = i->second.second + k;
				if (p > 65535) p -= 64511;
				InetAddress pred(&(i->first),4,p);
				if (std::find(r.begin(),r.end(),pred) == r.end())
					r.push_back(pred);
			}
		}
		return r;
	}

	return std::vector<InetAddress>();
}

} // namespace ZeroTier