summaryrefslogtreecommitdiff
path: root/node/Switch.cpp
blob: 9dbabdca728bd72e9e317fbbd783fc584db1540a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
/*
 * ZeroTier One - Network Virtualization Everywhere
 * Copyright (C) 2011-2016  ZeroTier, Inc.  https://www.zerotier.com/
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include <stdio.h>
#include <stdlib.h>

#include <algorithm>
#include <utility>
#include <stdexcept>

#include "../version.h"
#include "../include/ZeroTierOne.h"

#include "Constants.hpp"
#include "RuntimeEnvironment.hpp"
#include "Switch.hpp"
#include "Node.hpp"
#include "InetAddress.hpp"
#include "Topology.hpp"
#include "Peer.hpp"
#include "SelfAwareness.hpp"
#include "Packet.hpp"
#include "Cluster.hpp"

namespace ZeroTier {

#ifdef ZT_TRACE
static const char *etherTypeName(const unsigned int etherType)
{
	switch(etherType) {
		case ZT_ETHERTYPE_IPV4:  return "IPV4";
		case ZT_ETHERTYPE_ARP:   return "ARP";
		case ZT_ETHERTYPE_RARP:  return "RARP";
		case ZT_ETHERTYPE_ATALK: return "ATALK";
		case ZT_ETHERTYPE_AARP:  return "AARP";
		case ZT_ETHERTYPE_IPX_A: return "IPX_A";
		case ZT_ETHERTYPE_IPX_B: return "IPX_B";
		case ZT_ETHERTYPE_IPV6:  return "IPV6";
	}
	return "UNKNOWN";
}
#endif // ZT_TRACE

Switch::Switch(const RuntimeEnvironment *renv) :
	RR(renv),
	_lastBeaconResponse(0),
	_outstandingWhoisRequests(32),
	_lastUniteAttempt(8) // only really used on root servers and upstreams, and it'll grow there just fine
{
}

Switch::~Switch()
{
}

void Switch::onRemotePacket(const InetAddress &localAddr,const InetAddress &fromAddr,const void *data,unsigned int len)
{
	try {
		const uint64_t now = RR->node->now();

		if (len == 13) {
			/* LEGACY: before VERB_PUSH_DIRECT_PATHS, peers used broadcast
			 * announcements on the LAN to solve the 'same network problem.' We
			 * no longer send these, but we'll listen for them for a while to
			 * locate peers with versions <1.0.4. */

			Address beaconAddr(reinterpret_cast<const char *>(data) + 8,5);
			if (beaconAddr == RR->identity.address())
				return;
			if (!RR->node->shouldUsePathForZeroTierTraffic(localAddr,fromAddr))
				return;
			SharedPtr<Peer> peer(RR->topology->getPeer(beaconAddr));
			if (peer) { // we'll only respond to beacons from known peers
				if ((now - _lastBeaconResponse) >= 2500) { // limit rate of responses
					_lastBeaconResponse = now;
					Packet outp(peer->address(),RR->identity.address(),Packet::VERB_NOP);
					outp.armor(peer->key(),true);
					RR->node->putPacket(localAddr,fromAddr,outp.data(),outp.size());
				}
			}

		} else if (len > ZT_PROTO_MIN_FRAGMENT_LENGTH) { // min length check is important!
			if (reinterpret_cast<const uint8_t *>(data)[ZT_PACKET_FRAGMENT_IDX_FRAGMENT_INDICATOR] == ZT_PACKET_FRAGMENT_INDICATOR) {
				// Handle fragment ----------------------------------------------------

				Packet::Fragment fragment(data,len);
				const Address destination(fragment.destination());

				if (destination != RR->identity.address()) {
					// Fragment is not for us, so try to relay it
					if (fragment.hops() < ZT_RELAY_MAX_HOPS) {
						fragment.incrementHops();

						// Note: we don't bother initiating NAT-t for fragments, since heads will set that off.
						// It wouldn't hurt anything, just redundant and unnecessary.
						SharedPtr<Peer> relayTo = RR->topology->getPeer(destination);
						if ((!relayTo)||(!relayTo->send(fragment.data(),fragment.size(),now))) {
#ifdef ZT_ENABLE_CLUSTER
							if (RR->cluster) {
								RR->cluster->sendViaCluster(Address(),destination,fragment.data(),fragment.size(),false);
								return;
							}
#endif

							// Don't know peer or no direct path -- so relay via root server
							relayTo = RR->topology->getBestRoot();
							if (relayTo)
								relayTo->send(fragment.data(),fragment.size(),now);
						}
					} else {
						TRACE("dropped relay [fragment](%s) -> %s, max hops exceeded",fromAddr.toString().c_str(),destination.toString().c_str());
					}
				} else {
					// Fragment looks like ours
					const uint64_t fragmentPacketId = fragment.packetId();
					const unsigned int fragmentNumber = fragment.fragmentNumber();
					const unsigned int totalFragments = fragment.totalFragments();

					if ((totalFragments <= ZT_MAX_PACKET_FRAGMENTS)&&(fragmentNumber < ZT_MAX_PACKET_FRAGMENTS)&&(fragmentNumber > 0)&&(totalFragments > 1)) {
						// Fragment appears basically sane. Its fragment number must be
						// 1 or more, since a Packet with fragmented bit set is fragment 0.
						// Total fragments must be more than 1, otherwise why are we
						// seeing a Packet::Fragment?

						Mutex::Lock _l(_rxQueue_m);
						RXQueueEntry *const rq = _findRXQueueEntry(now,fragmentPacketId);

						if ((!rq->timestamp)||(rq->packetId != fragmentPacketId)) {
							// No packet found, so we received a fragment without its head.
							//TRACE("fragment (%u/%u) of %.16llx from %s",fragmentNumber + 1,totalFragments,fragmentPacketId,fromAddr.toString().c_str());

							rq->timestamp = now;
							rq->packetId = fragmentPacketId;
							rq->frags[fragmentNumber - 1] = fragment;
							rq->totalFragments = totalFragments; // total fragment count is known
							rq->haveFragments = 1 << fragmentNumber; // we have only this fragment
							rq->complete = false;
						} else if (!(rq->haveFragments & (1 << fragmentNumber))) {
							// We have other fragments and maybe the head, so add this one and check
							//TRACE("fragment (%u/%u) of %.16llx from %s",fragmentNumber + 1,totalFragments,fragmentPacketId,fromAddr.toString().c_str());

							rq->frags[fragmentNumber - 1] = fragment;
							rq->totalFragments = totalFragments;

							if (Utils::countBits(rq->haveFragments |= (1 << fragmentNumber)) == totalFragments) {
								// We have all fragments -- assemble and process full Packet
								//TRACE("packet %.16llx is complete, assembling and processing...",fragmentPacketId);

								for(unsigned int f=1;f<totalFragments;++f)
									rq->frag0.append(rq->frags[f - 1].payload(),rq->frags[f - 1].payloadLength());

								if (rq->frag0.tryDecode(RR,false)) {
									rq->timestamp = 0; // packet decoded, free entry
								} else {
									rq->complete = true; // set complete flag but leave entry since it probably needs WHOIS or something
								}
							}
						} // else this is a duplicate fragment, ignore
					}
				}

				// --------------------------------------------------------------------
			} else if (len >= ZT_PROTO_MIN_PACKET_LENGTH) { // min length check is important!
				// Handle packet head -------------------------------------------------

				// See packet format in Packet.hpp to understand this
				const uint64_t packetId = (
					(((uint64_t)reinterpret_cast<const uint8_t *>(data)[0]) << 56) |
					(((uint64_t)reinterpret_cast<const uint8_t *>(data)[1]) << 48) |
					(((uint64_t)reinterpret_cast<const uint8_t *>(data)[2]) << 40) |
					(((uint64_t)reinterpret_cast<const uint8_t *>(data)[3]) << 32) |
					(((uint64_t)reinterpret_cast<const uint8_t *>(data)[4]) << 24) |
					(((uint64_t)reinterpret_cast<const uint8_t *>(data)[5]) << 16) |
					(((uint64_t)reinterpret_cast<const uint8_t *>(data)[6]) << 8) |
					((uint64_t)reinterpret_cast<const uint8_t *>(data)[7])
				);
				const Address destination(reinterpret_cast<const uint8_t *>(data) + 8,ZT_ADDRESS_LENGTH);
				const Address source(reinterpret_cast<const uint8_t *>(data) + 13,ZT_ADDRESS_LENGTH);

				// Catch this and toss it -- it would never work, but it could happen if we somehow
				// mistakenly guessed an address we're bound to as a destination for another peer.
				if (source == RR->identity.address())
					return;

				//TRACE("<< %.16llx %s -> %s (size: %u)",(unsigned long long)packet->packetId(),source.toString().c_str(),destination.toString().c_str(),packet->size());

				if (destination != RR->identity.address()) {
					Packet packet(data,len);

					// Packet is not for us, so try to relay it
					if (packet.hops() < ZT_RELAY_MAX_HOPS) {
						packet.incrementHops();

						SharedPtr<Peer> relayTo = RR->topology->getPeer(destination);
						if ((relayTo)&&((relayTo->send(packet.data(),packet.size(),now)))) {
							Mutex::Lock _l(_lastUniteAttempt_m);
							uint64_t &luts = _lastUniteAttempt[_LastUniteKey(source,destination)];
							if ((now - luts) >= ZT_MIN_UNITE_INTERVAL) {
								luts = now;
								unite(source,destination);
							}
						} else {
#ifdef ZT_ENABLE_CLUSTER
							if (RR->cluster) {
								bool shouldUnite;
								{
									Mutex::Lock _l(_lastUniteAttempt_m);
									uint64_t &luts = _lastUniteAttempt[_LastUniteKey(source,destination)];
									shouldUnite = ((now - luts) >= ZT_MIN_UNITE_INTERVAL);
									if (shouldUnite)
										luts = now;
								}
								RR->cluster->sendViaCluster(source,destination,packet.data(),packet.size(),shouldUnite);
								return;
							}
#endif
							relayTo = RR->topology->getBestRoot(&source,1,true);
							if (relayTo)
								relayTo->send(packet.data(),packet.size(),now);
						}
					} else {
						TRACE("dropped relay %s(%s) -> %s, max hops exceeded",packet.source().toString().c_str(),fromAddr.toString().c_str(),destination.toString().c_str());
					}
				} else if ((reinterpret_cast<const uint8_t *>(data)[ZT_PACKET_IDX_FLAGS] & ZT_PROTO_FLAG_FRAGMENTED) != 0) {
					// Packet is the head of a fragmented packet series

					Mutex::Lock _l(_rxQueue_m);
					RXQueueEntry *const rq = _findRXQueueEntry(now,packetId);

					if ((!rq->timestamp)||(rq->packetId != packetId)) {
						// If we have no other fragments yet, create an entry and save the head
						//TRACE("fragment (0/?) of %.16llx from %s",pid,fromAddr.toString().c_str());

						rq->timestamp = now;
						rq->packetId = packetId;
						rq->frag0.init(data,len,localAddr,fromAddr,now);
						rq->totalFragments = 0;
						rq->haveFragments = 1;
						rq->complete = false;
					} else if (!(rq->haveFragments & 1)) {
						// If we have other fragments but no head, see if we are complete with the head

						if ((rq->totalFragments > 1)&&(Utils::countBits(rq->haveFragments |= 1) == rq->totalFragments)) {
							// We have all fragments -- assemble and process full Packet
							//TRACE("packet %.16llx is complete, assembling and processing...",pid);

							rq->frag0.init(data,len,localAddr,fromAddr,now);
							for(unsigned int f=1;f<rq->totalFragments;++f)
								rq->frag0.append(rq->frags[f - 1].payload(),rq->frags[f - 1].payloadLength());

							if (rq->frag0.tryDecode(RR,false)) {
								rq->timestamp = 0; // packet decoded, free entry
							} else {
								rq->complete = true; // set complete flag but leave entry since it probably needs WHOIS or something
							}
						} else {
							// Still waiting on more fragments, but keep the head
							rq->frag0.init(data,len,localAddr,fromAddr,now);
						}
					} // else this is a duplicate head, ignore
				} else {
					// Packet is unfragmented, so just process it
					IncomingPacket packet(data,len,localAddr,fromAddr,now);
					if (!packet.tryDecode(RR,false)) {
						Mutex::Lock _l(_rxQueue_m);
						RXQueueEntry *rq = &(_rxQueue[ZT_RX_QUEUE_SIZE - 1]);
						unsigned long i = ZT_RX_QUEUE_SIZE - 1;
						while ((i)&&(rq->timestamp)) {
							RXQueueEntry *tmp = &(_rxQueue[--i]);
							if (tmp->timestamp < rq->timestamp)
								rq = tmp;
						}
						rq->timestamp = now;
						rq->packetId = packetId;
						rq->frag0 = packet;
						rq->totalFragments = 1;
						rq->haveFragments = 1;
						rq->complete = true;
					}
				}

				// --------------------------------------------------------------------
			}
		}
	} catch (std::exception &ex) {
		TRACE("dropped packet from %s: unexpected exception: %s",fromAddr.toString().c_str(),ex.what());
	} catch ( ... ) {
		TRACE("dropped packet from %s: unexpected exception: (unknown)",fromAddr.toString().c_str());
	}
}

void Switch::onLocalEthernet(const SharedPtr<Network> &network,const MAC &from,const MAC &to,unsigned int etherType,unsigned int vlanId,const void *data,unsigned int len)
{
	if (!network->hasConfig())
		return;

	// Sanity check -- bridge loop? OS problem?
	if (to == network->mac())
		return;

	// Check to make sure this protocol is allowed on this network
	if (!network->config().permitsEtherType(etherType)) {
		TRACE("%.16llx: ignored tap: %s -> %s: ethertype %s not allowed on network %.16llx",network->id(),from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType),(unsigned long long)network->id());
		return;
	}

	// Check if this packet is from someone other than the tap -- i.e. bridged in
	bool fromBridged = false;
	if (from != network->mac()) {
		if (!network->config().permitsBridging(RR->identity.address())) {
			TRACE("%.16llx: %s -> %s %s not forwarded, bridging disabled or this peer not a bridge",network->id(),from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType));
			return;
		}
		fromBridged = true;
	}

	if (to.isMulticast()) {
		// Destination is a multicast address (including broadcast)
		MulticastGroup mg(to,0);

		if (to.isBroadcast()) {
			if ( (etherType == ZT_ETHERTYPE_ARP) && (len >= 28) && ((((const uint8_t *)data)[2] == 0x08)&&(((const uint8_t *)data)[3] == 0x00)&&(((const uint8_t *)data)[4] == 6)&&(((const uint8_t *)data)[5] == 4)&&(((const uint8_t *)data)[7] == 0x01)) ) {
				/* IPv4 ARP is one of the few special cases that we impose upon what is
				 * otherwise a straightforward Ethernet switch emulation. Vanilla ARP
				 * is dumb old broadcast and simply doesn't scale. ZeroTier multicast
				 * groups have an additional field called ADI (additional distinguishing
			   * information) which was added specifically for ARP though it could
				 * be used for other things too. We then take ARP broadcasts and turn
				 * them into multicasts by stuffing the IP address being queried into
				 * the 32-bit ADI field. In practice this uses our multicast pub/sub
				 * system to implement a kind of extended/distributed ARP table. */
				mg = MulticastGroup::deriveMulticastGroupForAddressResolution(InetAddress(((const unsigned char *)data) + 24,4,0));
			} else if (!network->config().enableBroadcast()) {
				// Don't transmit broadcasts if this network doesn't want them
				TRACE("%.16llx: dropped broadcast since ff:ff:ff:ff:ff:ff is not enabled",network->id());
				return;
			}
		} else if ((etherType == ZT_ETHERTYPE_IPV6)&&(len >= (40 + 8 + 16))) {
			/* IPv6 NDP emulation on ZeroTier-RFC4193 addressed networks! This allows
			 * for multicast-free operation in IPv6 networks, which both improves
			 * performance and is friendlier to mobile and (especially) IoT devices.
			 * In the future there may be a no-multicast build option for embedded
			 * and IoT use and this will be the preferred addressing mode. Note that
			 * it plays nice with our L2 emulation philosophy and even with bridging.
			 * While "real" devices behind the bridge can't have ZT-RFC4193 addresses
			 * themselves, they can look these addresses up with NDP and it will
			 * work just fine. */
			if ((reinterpret_cast<const uint8_t *>(data)[6] == 0x3a)&&(reinterpret_cast<const uint8_t *>(data)[40] == 0x87)) { // ICMPv6 neighbor solicitation
				std::vector<InetAddress> sips(network->config().staticIps());
				for(std::vector<InetAddress>::const_iterator sip(sips.begin());sip!=sips.end();++sip) {
					if ((sip->ss_family == AF_INET6)&&(Utils::ntoh((uint16_t)reinterpret_cast<const struct sockaddr_in6 *>(&(*sip))->sin6_port) == 88)) {
						const uint8_t *my6 = reinterpret_cast<const uint8_t *>(reinterpret_cast<const struct sockaddr_in6 *>(&(*sip))->sin6_addr.s6_addr);
						if ((my6[0] == 0xfd)&&(my6[9] == 0x99)&&(my6[10] == 0x93)) { // ZT-RFC4193 == fd__:____:____:____:__99:93__:____:____ / 88
							const uint8_t *pkt6 = reinterpret_cast<const uint8_t *>(data) + 40 + 8;
							unsigned int ptr = 0;
							while (ptr != 11) {
								if (pkt6[ptr] != my6[ptr])
									break;
								++ptr;
							}
							if (ptr == 11) { // /88 matches an assigned address on this network
								const Address atPeer(pkt6 + ptr,5);
								if (atPeer != RR->identity.address()) {
									const MAC atPeerMac(atPeer,network->id());
									TRACE("ZT-RFC4193 NDP emulation: %.16llx: forging response for %s/%s",network->id(),atPeer.toString().c_str(),atPeerMac.toString().c_str());

									uint8_t adv[72];
									adv[0] = 0x60; adv[1] = 0x00; adv[2] = 0x00; adv[3] = 0x00;
									adv[4] = 0x00; adv[5] = 0x20;
									adv[6] = 0x3a; adv[7] = 0xff;
									for(int i=0;i<16;++i) adv[8 + i] = pkt6[i];
									for(int i=0;i<16;++i) adv[24 + i] = my6[i];
									adv[40] = 0x88; adv[41] = 0x00;
									adv[42] = 0x00; adv[43] = 0x00; // future home of checksum
									adv[44] = 0x60; adv[45] = 0x00; adv[46] = 0x00; adv[47] = 0x00;
									for(int i=0;i<16;++i) adv[48 + i] = pkt6[i];
									adv[64] = 0x02; adv[65] = 0x01;
									adv[66] = atPeerMac[0]; adv[67] = atPeerMac[1]; adv[68] = atPeerMac[2]; adv[69] = atPeerMac[3]; adv[70] = atPeerMac[4]; adv[71] = atPeerMac[5];

									uint16_t pseudo_[36];
									uint8_t *const pseudo = reinterpret_cast<uint8_t *>(pseudo_);
									for(int i=0;i<32;++i) pseudo[i] = adv[8 + i];
									pseudo[32] = 0x00; pseudo[33] = 0x00; pseudo[34] = 0x00; pseudo[35] = 0x20;
									pseudo[36] = 0x00; pseudo[37] = 0x00; pseudo[38] = 0x00; pseudo[39] = 0x3a;
									for(int i=0;i<32;++i) pseudo[40 + i] = adv[40 + i];
									uint32_t checksum = 0;
									for(int i=0;i<36;++i) checksum += Utils::hton(pseudo_[i]);
									while ((checksum >> 16)) checksum = (checksum & 0xffff) + (checksum >> 16);
									checksum = ~checksum;
									adv[42] = (checksum >> 8) & 0xff;
									adv[43] = checksum & 0xff;

									RR->node->putFrame(network->id(),network->userPtr(),atPeerMac,from,ZT_ETHERTYPE_IPV6,0,adv,72);
									return; // stop processing: we have handled this frame with a spoofed local reply so no need to send it anywhere
								}
							}
						}
					}
				}
			}
		}

		/* Learn multicast groups for bridged-in hosts.
		 * Note that some OSes, most notably Linux, do this for you by learning
		 * multicast addresses on bridge interfaces and subscribing each slave.
		 * But in that case this does no harm, as the sets are just merged. */
		if (fromBridged)
			network->learnBridgedMulticastGroup(mg,RR->node->now());

		//TRACE("%.16llx: MULTICAST %s -> %s %s %u",network->id(),from.toString().c_str(),mg.toString().c_str(),etherTypeName(etherType),len);

		RR->mc->send(
			((!network->config().isPublic())&&(network->config().com())) ? &(network->config().com()) : (const CertificateOfMembership *)0,
			network->config().multicastLimit(),
			RR->node->now(),
			network->id(),
			network->config().activeBridges(),
			mg,
			(fromBridged) ? from : MAC(),
			etherType,
			data,
			len);

		return;
	}

	if (to[0] == MAC::firstOctetForNetwork(network->id())) {
		// Destination is another ZeroTier peer on the same network

		Address toZT(to.toAddress(network->id())); // since in-network MACs are derived from addresses and network IDs, we can reverse this
		SharedPtr<Peer> toPeer(RR->topology->getPeer(toZT));
		const bool includeCom = ( (network->config().isPrivate()) && (network->config().com()) && ((!toPeer)||(toPeer->needsOurNetworkMembershipCertificate(network->id(),RR->node->now(),true))) );
		if ((fromBridged)||(includeCom)) {
			Packet outp(toZT,RR->identity.address(),Packet::VERB_EXT_FRAME);
			outp.append(network->id());
			if (includeCom) {
				outp.append((unsigned char)0x01); // 0x01 -- COM included
				network->config().com().serialize(outp);
			} else {
				outp.append((unsigned char)0x00);
			}
			to.appendTo(outp);
			from.appendTo(outp);
			outp.append((uint16_t)etherType);
			outp.append(data,len);
			outp.compress();
			send(outp,true,network->id());
		} else {
			Packet outp(toZT,RR->identity.address(),Packet::VERB_FRAME);
			outp.append(network->id());
			outp.append((uint16_t)etherType);
			outp.append(data,len);
			outp.compress();
			send(outp,true,network->id());
		}

		//TRACE("%.16llx: UNICAST: %s -> %s etherType==%s(%.4x) vlanId==%u len==%u fromBridged==%d includeCom==%d",network->id(),from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType),etherType,vlanId,len,(int)fromBridged,(int)includeCom);

		return;
	}

	{
		// Destination is bridged behind a remote peer

		Address bridges[ZT_MAX_BRIDGE_SPAM];
		unsigned int numBridges = 0;

		/* Create an array of up to ZT_MAX_BRIDGE_SPAM recipients for this bridged frame. */
		bridges[0] = network->findBridgeTo(to);
		std::vector<Address> activeBridges(network->config().activeBridges());
		if ((bridges[0])&&(bridges[0] != RR->identity.address())&&(network->config().permitsBridging(bridges[0]))) {
			/* We have a known bridge route for this MAC, send it there. */
			++numBridges;
		} else if (!activeBridges.empty()) {
			/* If there is no known route, spam to up to ZT_MAX_BRIDGE_SPAM active
			 * bridges. If someone responds, we'll learn the route. */
			std::vector<Address>::const_iterator ab(activeBridges.begin());
			if (activeBridges.size() <= ZT_MAX_BRIDGE_SPAM) {
				// If there are <= ZT_MAX_BRIDGE_SPAM active bridges, spam them all
				while (ab != activeBridges.end()) {
					bridges[numBridges++] = *ab;
					++ab;
				}
			} else {
				// Otherwise pick a random set of them
				while (numBridges < ZT_MAX_BRIDGE_SPAM) {
					if (ab == activeBridges.end())
						ab = activeBridges.begin();
					if (((unsigned long)RR->node->prng() % (unsigned long)activeBridges.size()) == 0) {
						bridges[numBridges++] = *ab;
						++ab;
					} else ++ab;
				}
			}
		}

		for(unsigned int b=0;b<numBridges;++b) {
			SharedPtr<Peer> bridgePeer(RR->topology->getPeer(bridges[b]));
			Packet outp(bridges[b],RR->identity.address(),Packet::VERB_EXT_FRAME);
			outp.append(network->id());
			if ( (network->config().isPrivate()) && (network->config().com()) && ((!bridgePeer)||(bridgePeer->needsOurNetworkMembershipCertificate(network->id(),RR->node->now(),true))) ) {
				outp.append((unsigned char)0x01); // 0x01 -- COM included
				network->config().com().serialize(outp);
			} else {
				outp.append((unsigned char)0);
			}
			to.appendTo(outp);
			from.appendTo(outp);
			outp.append((uint16_t)etherType);
			outp.append(data,len);
			outp.compress();
			send(outp,true,network->id());
		}
	}
}

void Switch::send(const Packet &packet,bool encrypt,uint64_t nwid)
{
	if (packet.destination() == RR->identity.address()) {
		TRACE("BUG: caught attempt to send() to self, ignored");
		return;
	}

	//TRACE(">> %s to %s (%u bytes, encrypt==%d, nwid==%.16llx)",Packet::verbString(packet.verb()),packet.destination().toString().c_str(),packet.size(),(int)encrypt,nwid);

	if (!_trySend(packet,encrypt,nwid)) {
		Mutex::Lock _l(_txQueue_m);
		_txQueue.push_back(TXQueueEntry(packet.destination(),RR->node->now(),packet,encrypt,nwid));
	}
}

bool Switch::unite(const Address &p1,const Address &p2)
{
	if ((p1 == RR->identity.address())||(p2 == RR->identity.address()))
		return false;
	SharedPtr<Peer> p1p = RR->topology->getPeer(p1);
	if (!p1p)
		return false;
	SharedPtr<Peer> p2p = RR->topology->getPeer(p2);
	if (!p2p)
		return false;

	const uint64_t now = RR->node->now();

	std::pair<InetAddress,InetAddress> cg(Peer::findCommonGround(*p1p,*p2p,now));
	if ((!(cg.first))||(cg.first.ipScope() != cg.second.ipScope()))
		return false;

	TRACE("unite: %s(%s) <> %s(%s)",p1.toString().c_str(),cg.second.toString().c_str(),p2.toString().c_str(),cg.first.toString().c_str());

	/* Tell P1 where to find P2 and vice versa, sending the packets to P1 and
	 * P2 in randomized order in terms of which gets sent first. This is done
	 * since in a few cases NAT-t can be sensitive to slight timing differences
	 * in terms of when the two peers initiate. Normally this is accounted for
	 * by the nearly-simultaneous RENDEZVOUS kickoff from the relay, but
	 * given that relay are hosted on cloud providers this can in some
	 * cases have a few ms of latency between packet departures. By randomizing
	 * the order we make each attempted NAT-t favor one or the other going
	 * first, meaning if it doesn't succeed the first time it might the second
	 * and so forth. */
	unsigned int alt = (unsigned int)RR->node->prng() & 1;
	unsigned int completed = alt + 2;
	while (alt != completed) {
		if ((alt & 1) == 0) {
			// Tell p1 where to find p2.
			Packet outp(p1,RR->identity.address(),Packet::VERB_RENDEZVOUS);
			outp.append((unsigned char)0);
			p2.appendTo(outp);
			outp.append((uint16_t)cg.first.port());
			if (cg.first.isV6()) {
				outp.append((unsigned char)16);
				outp.append(cg.first.rawIpData(),16);
			} else {
				outp.append((unsigned char)4);
				outp.append(cg.first.rawIpData(),4);
			}
			outp.armor(p1p->key(),true);
			p1p->send(outp.data(),outp.size(),now);
		} else {
			// Tell p2 where to find p1.
			Packet outp(p2,RR->identity.address(),Packet::VERB_RENDEZVOUS);
			outp.append((unsigned char)0);
			p1.appendTo(outp);
			outp.append((uint16_t)cg.second.port());
			if (cg.second.isV6()) {
				outp.append((unsigned char)16);
				outp.append(cg.second.rawIpData(),16);
			} else {
				outp.append((unsigned char)4);
				outp.append(cg.second.rawIpData(),4);
			}
			outp.armor(p2p->key(),true);
			p2p->send(outp.data(),outp.size(),now);
		}
		++alt; // counts up and also flips LSB
	}

	return true;
}

void Switch::rendezvous(const SharedPtr<Peer> &peer,const InetAddress &localAddr,const InetAddress &atAddr)
{
	TRACE("sending NAT-t message to %s(%s)",peer->address().toString().c_str(),atAddr.toString().c_str());
	const uint64_t now = RR->node->now();
	peer->sendHELLO(localAddr,atAddr,now,2); // first attempt: send low-TTL packet to 'open' local NAT
	{
		Mutex::Lock _l(_contactQueue_m);
		_contactQueue.push_back(ContactQueueEntry(peer,now + ZT_NAT_T_TACTICAL_ESCALATION_DELAY,localAddr,atAddr));
	}
}

void Switch::requestWhois(const Address &addr)
{
	bool inserted = false;
	{
		Mutex::Lock _l(_outstandingWhoisRequests_m);
		WhoisRequest &r = _outstandingWhoisRequests[addr];
		if (r.lastSent) {
			r.retries = 0; // reset retry count if entry already existed, but keep waiting and retry again after normal timeout
		} else {
			r.lastSent = RR->node->now();
			inserted = true;
		}
	}
	if (inserted)
		_sendWhoisRequest(addr,(const Address *)0,0);
}

void Switch::doAnythingWaitingForPeer(const SharedPtr<Peer> &peer)
{
	{	// cancel pending WHOIS since we now know this peer
		Mutex::Lock _l(_outstandingWhoisRequests_m);
		_outstandingWhoisRequests.erase(peer->address());
	}

	{	// finish processing any packets waiting on peer's public key / identity
		Mutex::Lock _l(_rxQueue_m);
		unsigned long i = ZT_RX_QUEUE_SIZE;
		while (i) {
			RXQueueEntry *rq = &(_rxQueue[--i]);
			if ((rq->timestamp)&&(rq->complete)) {
				if (rq->frag0.tryDecode(RR,false))
					rq->timestamp = 0;
			}
		}
	}

	{	// finish sending any packets waiting on peer's public key / identity
		Mutex::Lock _l(_txQueue_m);
		for(std::list< TXQueueEntry >::iterator txi(_txQueue.begin());txi!=_txQueue.end();) {
			if (txi->dest == peer->address()) {
				if (_trySend(txi->packet,txi->encrypt,txi->nwid))
					_txQueue.erase(txi++);
				else ++txi;
			} else ++txi;
		}
	}
}

unsigned long Switch::doTimerTasks(uint64_t now)
{
	unsigned long nextDelay = 0xffffffff; // ceiling delay, caller will cap to minimum

	{	// Iterate through NAT traversal strategies for entries in contact queue
		Mutex::Lock _l(_contactQueue_m);
		for(std::list<ContactQueueEntry>::iterator qi(_contactQueue.begin());qi!=_contactQueue.end();) {
			if (now >= qi->fireAtTime) {
				if (!qi->peer->pushDirectPaths(qi->localAddr,qi->inaddr,now,true,false))
					qi->peer->sendHELLO(qi->localAddr,qi->inaddr,now);
				_contactQueue.erase(qi++);
				continue;
				/* Old symmetric NAT buster code, obsoleted by port prediction alg in SelfAwareness but left around for now in case we revert
				if (qi->strategyIteration == 0) {
					// First strategy: send packet directly to destination
					qi->peer->sendHELLO(qi->localAddr,qi->inaddr,now);
				} else if (qi->strategyIteration <= 3) {
					// Strategies 1-3: try escalating ports for symmetric NATs that remap sequentially
					InetAddress tmpaddr(qi->inaddr);
					int p = (int)qi->inaddr.port() + qi->strategyIteration;
					if (p > 65535)
						p -= 64511;
					tmpaddr.setPort((unsigned int)p);
					qi->peer->sendHELLO(qi->localAddr,tmpaddr,now);
				} else {
					// All strategies tried, expire entry
					_contactQueue.erase(qi++);
					continue;
				}
				++qi->strategyIteration;
				qi->fireAtTime = now + ZT_NAT_T_TACTICAL_ESCALATION_DELAY;
				nextDelay = std::min(nextDelay,(unsigned long)ZT_NAT_T_TACTICAL_ESCALATION_DELAY);
				*/
			} else {
				nextDelay = std::min(nextDelay,(unsigned long)(qi->fireAtTime - now));
			}
			++qi; // if qi was erased, loop will have continued before here
		}
	}

	{	// Retry outstanding WHOIS requests
		Mutex::Lock _l(_outstandingWhoisRequests_m);
		Hashtable< Address,WhoisRequest >::Iterator i(_outstandingWhoisRequests);
		Address *a = (Address *)0;
		WhoisRequest *r = (WhoisRequest *)0;
		while (i.next(a,r)) {
			const unsigned long since = (unsigned long)(now - r->lastSent);
			if (since >= ZT_WHOIS_RETRY_DELAY) {
				if (r->retries >= ZT_MAX_WHOIS_RETRIES) {
					TRACE("WHOIS %s timed out",a->toString().c_str());
					_outstandingWhoisRequests.erase(*a);
				} else {
					r->lastSent = now;
					r->peersConsulted[r->retries] = _sendWhoisRequest(*a,r->peersConsulted,r->retries);
					++r->retries;
					TRACE("WHOIS %s (retry %u)",a->toString().c_str(),r->retries);
					nextDelay = std::min(nextDelay,(unsigned long)ZT_WHOIS_RETRY_DELAY);
				}
			} else {
				nextDelay = std::min(nextDelay,ZT_WHOIS_RETRY_DELAY - since);
			}
		}
	}

	{	// Time out TX queue packets that never got WHOIS lookups or other info.
		Mutex::Lock _l(_txQueue_m);
		for(std::list< TXQueueEntry >::iterator txi(_txQueue.begin());txi!=_txQueue.end();) {
			if (_trySend(txi->packet,txi->encrypt,txi->nwid))
				_txQueue.erase(txi++);
			else if ((now - txi->creationTime) > ZT_TRANSMIT_QUEUE_TIMEOUT) {
				TRACE("TX %s -> %s timed out",txi->packet.source().toString().c_str(),txi->packet.destination().toString().c_str());
				_txQueue.erase(txi++);
			} else ++txi;
		}
	}

	{	// Remove really old last unite attempt entries to keep table size controlled
		Mutex::Lock _l(_lastUniteAttempt_m);
		Hashtable< _LastUniteKey,uint64_t >::Iterator i(_lastUniteAttempt);
		_LastUniteKey *k = (_LastUniteKey *)0;
		uint64_t *v = (uint64_t *)0;
		while (i.next(k,v)) {
			if ((now - *v) >= (ZT_MIN_UNITE_INTERVAL * 8))
				_lastUniteAttempt.erase(*k);
		}
	}

	return nextDelay;
}

Address Switch::_sendWhoisRequest(const Address &addr,const Address *peersAlreadyConsulted,unsigned int numPeersAlreadyConsulted)
{
	SharedPtr<Peer> root(RR->topology->getBestRoot(peersAlreadyConsulted,numPeersAlreadyConsulted,false));
	if (root) {
		Packet outp(root->address(),RR->identity.address(),Packet::VERB_WHOIS);
		addr.appendTo(outp);
		outp.armor(root->key(),true);
		if (root->send(outp.data(),outp.size(),RR->node->now()))
			return root->address();
	}
	return Address();
}

bool Switch::_trySend(const Packet &packet,bool encrypt,uint64_t nwid)
{
	SharedPtr<Peer> peer(RR->topology->getPeer(packet.destination()));

	if (peer) {
		const uint64_t now = RR->node->now();

		SharedPtr<Network> network;
		if (nwid) {
			network = RR->node->network(nwid);
			if ((!network)||(!network->hasConfig()))
				return false; // we probably just left this network, let its packets die
		}

		Path *viaPath = peer->getBestPath(now);
		SharedPtr<Peer> relay;

		if (!viaPath) {
			if (network) {
				unsigned int bestq = ~((unsigned int)0); // max unsigned int since quality is lower==better
				for(unsigned int ri=0;ri<network->config().staticDeviceCount();++ri) {
					const ZT_VirtualNetworkStaticDevice &r = network->config().staticDevice(ri);
					if ((r.address != peer->address().toInt())&&((r.flags & ZT_NETWORK_STATIC_DEVICE_IS_RELAY) != 0)) {
						SharedPtr<Peer> rp(RR->topology->getPeer(Address(r.address)));
						if (rp) {
							const unsigned int q = rp->relayQuality(now);
							if (q < bestq) {
								bestq = q;
								rp.swap(relay);
							}
						}
					}
				}
			}

			if (!relay)
				relay = RR->topology->getBestRoot();

			if ( (!relay) || (!(viaPath = relay->getBestPath(now))) )
				return false;
		}
		// viaPath will not be null if we make it here

		// Push possible direct paths to us if we are relaying
		if (relay) {
			peer->pushDirectPaths(viaPath->localAddress(),viaPath->address(),now,false,( (network)&&(network->isAllowed(peer)) ));
			viaPath->sent(now);
		}

		Packet tmp(packet);

		unsigned int chunkSize = std::min(tmp.size(),(unsigned int)ZT_UDP_DEFAULT_PAYLOAD_MTU);
		tmp.setFragmented(chunkSize < tmp.size());

		tmp.armor(peer->key(),encrypt);

		if (viaPath->send(RR,tmp.data(),chunkSize,now)) {
			if (chunkSize < tmp.size()) {
				// Too big for one packet, fragment the rest
				unsigned int fragStart = chunkSize;
				unsigned int remaining = tmp.size() - chunkSize;
				unsigned int fragsRemaining = (remaining / (ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH));
				if ((fragsRemaining * (ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH)) < remaining)
					++fragsRemaining;
				unsigned int totalFragments = fragsRemaining + 1;

				for(unsigned int fno=1;fno<totalFragments;++fno) {
					chunkSize = std::min(remaining,(unsigned int)(ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH));
					Packet::Fragment frag(tmp,fragStart,chunkSize,fno,totalFragments);
					viaPath->send(RR,frag.data(),frag.size(),now);
					fragStart += chunkSize;
					remaining -= chunkSize;
				}
			}

			return true;
		}
	} else {
		requestWhois(packet.destination());
	}
	return false;
}

} // namespace ZeroTier