summaryrefslogtreecommitdiff
path: root/node/Switch.cpp
blob: e6a8e6fd2125012fd4c4e12b8868515b7ae973c8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
/*
 * ZeroTier One - Global Peer to Peer Ethernet
 * Copyright (C) 2012-2013  ZeroTier Networks LLC
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 * --
 *
 * ZeroTier may be used and distributed under the terms of the GPLv3, which
 * are available at: http://www.gnu.org/licenses/gpl-3.0.html
 *
 * If you would like to embed ZeroTier into a commercial application or
 * redistribute it in a modified binary form, please contact ZeroTier Networks
 * LLC. Start here: http://www.zerotier.com/
 */

#include <stdio.h>
#include <stdlib.h>

#include <algorithm>
#include <utility>
#include <stdexcept>

#include "Constants.hpp"

#ifdef __WINDOWS__
#include <WinSock2.h>
#include <Windows.h>
#endif

#include "Switch.hpp"
#include "Node.hpp"
#include "EthernetTap.hpp"
#include "InetAddress.hpp"
#include "Topology.hpp"
#include "RuntimeEnvironment.hpp"
#include "Peer.hpp"
#include "NodeConfig.hpp"
#include "Demarc.hpp"
#include "CMWC4096.hpp"

#include "../version.h"

namespace ZeroTier {

Switch::Switch(const RuntimeEnvironment *renv) :
	_r(renv),
	_multicastIdCounter((unsigned int)renv->prng->next32()) // start a random spot to minimize possible collisions on startup
{
}

Switch::~Switch()
{
}

void Switch::onRemotePacket(Demarc::Port localPort,const InetAddress &fromAddr,const Buffer<4096> &data)
{
	try {
		if (data.size() > ZT_PROTO_MIN_FRAGMENT_LENGTH) {
			if (data[ZT_PACKET_FRAGMENT_IDX_FRAGMENT_INDICATOR] == ZT_PACKET_FRAGMENT_INDICATOR)
				_handleRemotePacketFragment(localPort,fromAddr,data);
			else if (data.size() >= ZT_PROTO_MIN_PACKET_LENGTH)
				_handleRemotePacketHead(localPort,fromAddr,data);
		}
	} catch (std::exception &ex) {
		TRACE("dropped packet from %s: unexpected exception: %s",fromAddr.toString().c_str(),ex.what());
	} catch ( ... ) {
		TRACE("dropped packet from %s: unexpected exception: (unknown)",fromAddr.toString().c_str());
	}
}

void Switch::onLocalEthernet(const SharedPtr<Network> &network,const MAC &from,const MAC &to,unsigned int etherType,const Buffer<4096> &data)
{
	SharedPtr<NetworkConfig> nconf(network->config2());
	if (!nconf)
		return;

	if (to == network->mac()) {
		LOG("%s: frame received from self, ignoring (bridge loop? OS bug?)",network->tapDeviceName().c_str());
		return;
	}
	if (from != network->mac()) {
		LOG("ignored tap: %s -> %s %s (bridging not supported)",from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType));
		return;
	}

	if (!nconf->permitsEtherType(etherType)) {
		LOG("ignored tap: %s -> %s: ethertype %s not allowed on network %.16llx",from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType),(unsigned long long)network->id());
		return;
	}

	if (to.isMulticast()) {
		MulticastGroup mg(to,0);

		if (to.isBroadcast()) {
			// Cram IPv4 IP into ADI field to make IPv4 ARP broadcast channel specific and scalable
			if ((etherType == ZT_ETHERTYPE_ARP)&&(data.size() == 28)&&(data[2] == 0x08)&&(data[3] == 0x00)&&(data[4] == 6)&&(data[5] == 4)&&(data[7] == 0x01))
				mg = MulticastGroup::deriveMulticastGroupForAddressResolution(InetAddress(data.field(24,4),4,0));
		}

		const unsigned int mcid = ++_multicastIdCounter & 0xffffff;
		const uint16_t bloomNonce = (uint16_t)(_r->prng->next32() & 0xffff); // doesn't need to be cryptographically strong
		unsigned char bloom[ZT_PROTO_VERB_MULTICAST_FRAME_LEN_PROPAGATION_BLOOM];
		unsigned char fifo[ZT_PROTO_VERB_MULTICAST_FRAME_LEN_PROPAGATION_FIFO + ZT_ADDRESS_LENGTH];
		unsigned char *const fifoEnd = fifo + sizeof(fifo);
		const unsigned int signedPartLen = (ZT_PROTO_VERB_MULTICAST_FRAME_IDX_FRAME - ZT_PROTO_VERB_MULTICAST_FRAME_IDX__START_OF_SIGNED_PORTION) + data.size();
		const SharedPtr<Peer> supernode(_r->topology->getBestSupernode());

		for(unsigned int prefix=0,np=((unsigned int)2 << (nconf->multicastPrefixBits() - 1));prefix<np;++prefix) {
			memset(bloom,0,sizeof(bloom));

			unsigned char *fifoPtr = fifo;
			_r->mc->getNextHops(network->id(),mg,Multicaster::AddToPropagationQueue(&fifoPtr,fifoEnd,bloom,bloomNonce,_r->identity.address(),nconf->multicastPrefixBits(),prefix));
			while (fifoPtr != fifoEnd)
				*(fifoPtr++) = (unsigned char)0;

			Address firstHop(fifo,ZT_ADDRESS_LENGTH); // fifo is +1 in size, with first element being used here
			if (!firstHop) {
				if (supernode)
					firstHop = supernode->address();
				else continue;
			}

			Packet outp(firstHop,_r->identity.address(),Packet::VERB_MULTICAST_FRAME);
			outp.append((uint16_t)0);
			outp.append(fifo + ZT_ADDRESS_LENGTH,ZT_PROTO_VERB_MULTICAST_FRAME_LEN_PROPAGATION_FIFO); // remainder of fifo is loaded into packet
			outp.append(bloom,ZT_PROTO_VERB_MULTICAST_FRAME_LEN_PROPAGATION_BLOOM);
			outp.append((nconf->com()) ? (unsigned char)ZT_PROTO_VERB_MULTICAST_FRAME_FLAGS_HAS_MEMBERSHIP_CERTIFICATE : (unsigned char)0);
			outp.append(network->id());
			outp.append(bloomNonce);
			outp.append((unsigned char)nconf->multicastPrefixBits());
			outp.append((unsigned char)prefix);
			_r->identity.address().appendTo(outp);
			outp.append((unsigned char)((mcid >> 16) & 0xff));
			outp.append((unsigned char)((mcid >> 8) & 0xff));
			outp.append((unsigned char)(mcid & 0xff));
			outp.append(from.data,6);
			outp.append(mg.mac().data,6);
			outp.append(mg.adi());
			outp.append((uint16_t)etherType);
			outp.append((uint16_t)data.size());
			outp.append(data);

			C25519::Signature sig(_r->identity.sign(outp.field(ZT_PROTO_VERB_MULTICAST_FRAME_IDX__START_OF_SIGNED_PORTION,signedPartLen),signedPartLen));
			outp.append((uint16_t)sig.size());
			outp.append(sig.data,(unsigned int)sig.size());

			if (nconf->com())
				nconf->com().serialize(outp);

			outp.compress();
			send(outp,true);
		}
	} else if (to.isZeroTier()) {
		// Simple unicast frame from us to another node
		Address toZT(to.data + 1,ZT_ADDRESS_LENGTH);
		if (network->isAllowed(toZT)) {
			network->pushMembershipCertificate(toZT,false,Utils::now());

			Packet outp(toZT,_r->identity.address(),Packet::VERB_FRAME);
			outp.append(network->id());
			outp.append((uint16_t)etherType);
			outp.append(data);
			outp.compress();
			send(outp,true);
		} else {
			TRACE("UNICAST: %s -> %s %s (dropped, destination not a member of closed network %llu)",from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType),network->id());
		}
	} else {
		TRACE("UNICAST: %s -> %s %s (dropped, destination MAC not ZeroTier)",from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType));
	}
}

void Switch::send(const Packet &packet,bool encrypt)
{
	if (packet.destination() == _r->identity.address()) {
		TRACE("BUG: caught attempt to send() to self, ignored");
		return;
	}

	if (!_trySend(packet,encrypt)) {
		Mutex::Lock _l(_txQueue_m);
		_txQueue.insert(std::pair< Address,TXQueueEntry >(packet.destination(),TXQueueEntry(Utils::now(),packet,encrypt)));
	}
}

void Switch::sendHELLO(const Address &dest)
{
	Packet outp(dest,_r->identity.address(),Packet::VERB_HELLO);
	outp.append((unsigned char)ZT_PROTO_VERSION);
	outp.append((unsigned char)ZEROTIER_ONE_VERSION_MAJOR);
	outp.append((unsigned char)ZEROTIER_ONE_VERSION_MINOR);
	outp.append((uint16_t)ZEROTIER_ONE_VERSION_REVISION);
	outp.append(Utils::now());
	_r->identity.serialize(outp,false);
	send(outp,false);
}

bool Switch::sendHELLO(const SharedPtr<Peer> &dest,Demarc::Port localPort,const InetAddress &remoteAddr)
{
	uint64_t now = Utils::now();
	Packet outp(dest->address(),_r->identity.address(),Packet::VERB_HELLO);
	outp.append((unsigned char)ZT_PROTO_VERSION);
	outp.append((unsigned char)ZEROTIER_ONE_VERSION_MAJOR);
	outp.append((unsigned char)ZEROTIER_ONE_VERSION_MINOR);
	outp.append((uint16_t)ZEROTIER_ONE_VERSION_REVISION);
	outp.append(now);
	_r->identity.serialize(outp,false);
	outp.armor(dest->key(),false);
	return (_r->demarc->send(localPort,remoteAddr,outp.data(),outp.size(),-1) != Demarc::NULL_PORT);
}

bool Switch::unite(const Address &p1,const Address &p2,bool force)
{
	if ((p1 == _r->identity.address())||(p2 == _r->identity.address()))
		return false;

	SharedPtr<Peer> p1p = _r->topology->getPeer(p1);
	if (!p1p)
		return false;
	SharedPtr<Peer> p2p = _r->topology->getPeer(p2);
	if (!p2p)
		return false;

	uint64_t now = Utils::now();

	std::pair<InetAddress,InetAddress> cg(Peer::findCommonGround(*p1p,*p2p,now));
	if (!(cg.first))
		return false;

	// Addresses are sorted in key for last unite attempt map for order
	// invariant lookup: (p1,p2) == (p2,p1)
	Array<Address,2> uniteKey;
	if (p1 >= p2) {
		uniteKey[0] = p2;
		uniteKey[1] = p1;
	} else {
		uniteKey[0] = p1;
		uniteKey[1] = p2;
	}
	{
		Mutex::Lock _l(_lastUniteAttempt_m);
		std::map< Array< Address,2 >,uint64_t >::const_iterator e(_lastUniteAttempt.find(uniteKey));
		if ((!force)&&(e != _lastUniteAttempt.end())&&((now - e->second) < ZT_MIN_UNITE_INTERVAL))
			return false;
		else _lastUniteAttempt[uniteKey] = now;
	}

	TRACE("unite: %s(%s) <> %s(%s)",p1.toString().c_str(),cg.second.toString().c_str(),p2.toString().c_str(),cg.first.toString().c_str());

	/* Tell P1 where to find P2 and vice versa, sending the packets to P1 and
	 * P2 in randomized order in terms of which gets sent first. This is done
	 * since in a few cases NAT-t can be sensitive to slight timing differences
	 * in terms of when the two peers initiate. Normally this is accounted for
	 * by the nearly-simultaneous RENDEZVOUS kickoff from the supernode, but
	 * given that supernodes are hosted on cloud providers this can in some
	 * cases have a few ms of latency between packet departures. By randomizing
	 * the order we make each attempted NAT-t favor one or the other going
	 * first, meaning if it doesn't succeed the first time it might the second
	 * and so forth. */
	unsigned int alt = _r->prng->next32() & 1;
	unsigned int completed = alt + 2;
	while (alt != completed) {
		if ((alt & 1) == 0) {
			// Tell p1 where to find p2.
			Packet outp(p1,_r->identity.address(),Packet::VERB_RENDEZVOUS);
			outp.append((unsigned char)0);
			p2.appendTo(outp);
			outp.append((uint16_t)cg.first.port());
			if (cg.first.isV6()) {
				outp.append((unsigned char)16);
				outp.append(cg.first.rawIpData(),16);
			} else {
				outp.append((unsigned char)4);
				outp.append(cg.first.rawIpData(),4);
			}
			outp.armor(p1p->key(),true);
			p1p->send(_r,outp.data(),outp.size(),now);
		} else {
			// Tell p2 where to find p1.
			Packet outp(p2,_r->identity.address(),Packet::VERB_RENDEZVOUS);
			outp.append((unsigned char)0);
			p1.appendTo(outp);
			outp.append((uint16_t)cg.second.port());
			if (cg.second.isV6()) {
				outp.append((unsigned char)16);
				outp.append(cg.second.rawIpData(),16);
			} else {
				outp.append((unsigned char)4);
				outp.append(cg.second.rawIpData(),4);
			}
			outp.armor(p2p->key(),true);
			p2p->send(_r,outp.data(),outp.size(),now);
		}
		++alt; // counts up and also flips LSB
	}

	return true;
}

void Switch::contact(const SharedPtr<Peer> &peer,const InetAddress &atAddr)
{
	Demarc::Port fromPort = _r->demarc->pick(atAddr);
	_r->demarc->send(fromPort,atAddr,"\0",1,ZT_FIREWALL_OPENER_HOPS);

	{
		Mutex::Lock _l(_contactQueue_m);
		_contactQueue.push_back(ContactQueueEntry(peer,Utils::now() + ZT_RENDEZVOUS_NAT_T_DELAY,fromPort,atAddr));
	}

	// Kick main loop out of wait so that it can pick up this
	// change to our scheduled timer tasks.
	_r->mainLoopWaitCondition.signal();
}

unsigned long Switch::doTimerTasks()
{
	unsigned long nextDelay = ~((unsigned long)0); // big number, caller will cap return value
	uint64_t now = Utils::now();

	{
		Mutex::Lock _l(_contactQueue_m);
		for(std::list<ContactQueueEntry>::iterator qi(_contactQueue.begin());qi!=_contactQueue.end();) {
			if (now >= qi->fireAtTime) {
				TRACE("sending NAT-T HELLO to %s(%s)",qi->peer->address().toString().c_str(),qi->inaddr.toString().c_str());
				sendHELLO(qi->peer,qi->localPort,qi->inaddr);
				_contactQueue.erase(qi++);
			} else {
				nextDelay = std::min(nextDelay,(unsigned long)(qi->fireAtTime - now));
				++qi;
			}
		}
	}

	{
		Mutex::Lock _l(_outstandingWhoisRequests_m);
		for(std::map< Address,WhoisRequest >::iterator i(_outstandingWhoisRequests.begin());i!=_outstandingWhoisRequests.end();) {
			unsigned long since = (unsigned long)(now - i->second.lastSent);
			if (since >= ZT_WHOIS_RETRY_DELAY) {
				if (i->second.retries >= ZT_MAX_WHOIS_RETRIES) {
					TRACE("WHOIS %s timed out",i->first.toString().c_str());
					_outstandingWhoisRequests.erase(i++);
					continue;
				} else {
					i->second.lastSent = now;
					i->second.peersConsulted[i->second.retries] = _sendWhoisRequest(i->first,i->second.peersConsulted,i->second.retries);
					++i->second.retries;
					TRACE("WHOIS %s (retry %u)",i->first.toString().c_str(),i->second.retries);
					nextDelay = std::min(nextDelay,(unsigned long)ZT_WHOIS_RETRY_DELAY);
				}
			} else nextDelay = std::min(nextDelay,ZT_WHOIS_RETRY_DELAY - since);
			++i;
		}
	}

	{
		Mutex::Lock _l(_txQueue_m);
		for(std::multimap< Address,TXQueueEntry >::iterator i(_txQueue.begin());i!=_txQueue.end();) {
			if (_trySend(i->second.packet,i->second.encrypt))
				_txQueue.erase(i++);
			else if ((now - i->second.creationTime) > ZT_TRANSMIT_QUEUE_TIMEOUT) {
				TRACE("TX %s -> %s timed out",i->second.packet.source().toString().c_str(),i->second.packet.destination().toString().c_str());
				_txQueue.erase(i++);
			} else ++i;
		}
	}

	{
		Mutex::Lock _l(_rxQueue_m);
		for(std::list< SharedPtr<PacketDecoder> >::iterator i(_rxQueue.begin());i!=_rxQueue.end();) {
			if ((now - (*i)->receiveTime()) > ZT_RECEIVE_QUEUE_TIMEOUT) {
				TRACE("RX %s -> %s timed out",(*i)->source().toString().c_str(),(*i)->destination().toString().c_str());
				_rxQueue.erase(i++);
			} else ++i;
		}
	}

	{
		Mutex::Lock _l(_defragQueue_m);
		for(std::map< uint64_t,DefragQueueEntry >::iterator i(_defragQueue.begin());i!=_defragQueue.end();) {
			if ((now - i->second.creationTime) > ZT_FRAGMENTED_PACKET_RECEIVE_TIMEOUT) {
				TRACE("incomplete fragmented packet %.16llx timed out, fragments discarded",i->first);
				_defragQueue.erase(i++);
			} else ++i;
		}
	}

	return std::max(nextDelay,(unsigned long)10); // minimum delay
}

void Switch::announceMulticastGroups(const std::map< SharedPtr<Network>,std::set<MulticastGroup> > &allMemberships)
{
	std::vector< SharedPtr<Peer> > directPeers;
	_r->topology->eachPeer(Topology::CollectPeersWithActiveDirectPath(directPeers,Utils::now()));

#ifdef ZT_TRACE
	unsigned int totalMulticastGroups = 0;
	for(std::map< SharedPtr<Network>,std::set<MulticastGroup> >::const_iterator i(allMemberships.begin());i!=allMemberships.end();++i)
		totalMulticastGroups += (unsigned int)i->second.size();
	TRACE("announcing %u multicast groups for %u networks to %u peers",totalMulticastGroups,(unsigned int)allMemberships.size(),(unsigned int)directPeers.size());
#endif

	uint64_t now = Utils::now();
	for(std::vector< SharedPtr<Peer> >::iterator p(directPeers.begin());p!=directPeers.end();++p) {
		Packet outp((*p)->address(),_r->identity.address(),Packet::VERB_MULTICAST_LIKE);

		for(std::map< SharedPtr<Network>,std::set<MulticastGroup> >::const_iterator nwmgs(allMemberships.begin());nwmgs!=allMemberships.end();++nwmgs) {
			nwmgs->first->pushMembershipCertificate((*p)->address(),false,now);

			if ((_r->topology->isSupernode((*p)->address()))||(nwmgs->first->isAllowed((*p)->address()))) {
				for(std::set<MulticastGroup>::iterator mg(nwmgs->second.begin());mg!=nwmgs->second.end();++mg) {
					if ((outp.size() + 18) > ZT_UDP_DEFAULT_PAYLOAD_MTU) {
						send(outp,true);
						outp.reset((*p)->address(),_r->identity.address(),Packet::VERB_MULTICAST_LIKE);
					}

					// network ID, MAC, ADI
					outp.append((uint64_t)nwmgs->first->id());
					outp.append(mg->mac().data,6);
					outp.append((uint32_t)mg->adi());
				}
			}
		}

		if (outp.size() > ZT_PROTO_MIN_PACKET_LENGTH)
			send(outp,true);
	}
}

void Switch::announceMulticastGroups(const SharedPtr<Peer> &peer)
{
	Packet outp(peer->address(),_r->identity.address(),Packet::VERB_MULTICAST_LIKE);
	std::vector< SharedPtr<Network> > networks(_r->nc->networks());
	uint64_t now = Utils::now();
	for(std::vector< SharedPtr<Network> >::iterator n(networks.begin());n!=networks.end();++n) {
		if (((*n)->isAllowed(peer->address()))||(_r->topology->isSupernode(peer->address()))) {
			(*n)->pushMembershipCertificate(peer->address(),false,now);

			std::set<MulticastGroup> mgs((*n)->multicastGroups());
			for(std::set<MulticastGroup>::iterator mg(mgs.begin());mg!=mgs.end();++mg) {
				if ((outp.size() + 18) > ZT_UDP_DEFAULT_PAYLOAD_MTU) {
					send(outp,true);
					outp.reset(peer->address(),_r->identity.address(),Packet::VERB_MULTICAST_LIKE);
				}

				// network ID, MAC, ADI
				outp.append((uint64_t)(*n)->id());
				outp.append(mg->mac().data,6);
				outp.append((uint32_t)mg->adi());
			}
		}
	}
	if (outp.size() > ZT_PROTO_MIN_PACKET_LENGTH)
		send(outp,true);
}

void Switch::requestWhois(const Address &addr)
{
	//TRACE("requesting WHOIS for %s",addr.toString().c_str());
	bool inserted = false;
	{
		Mutex::Lock _l(_outstandingWhoisRequests_m);
		std::pair< std::map< Address,WhoisRequest >::iterator,bool > entry(_outstandingWhoisRequests.insert(std::pair<Address,WhoisRequest>(addr,WhoisRequest())));
		if ((inserted = entry.second))
			entry.first->second.lastSent = Utils::now();
		entry.first->second.retries = 0; // reset retry count if entry already existed
	}
	if (inserted)
		_sendWhoisRequest(addr,(const Address *)0,0);
}

void Switch::cancelWhoisRequest(const Address &addr)
{
	Mutex::Lock _l(_outstandingWhoisRequests_m);
	_outstandingWhoisRequests.erase(addr);
}

void Switch::doAnythingWaitingForPeer(const SharedPtr<Peer> &peer)
{
	{
		Mutex::Lock _l(_outstandingWhoisRequests_m);
		_outstandingWhoisRequests.erase(peer->address());
	}

	{
		Mutex::Lock _l(_rxQueue_m);
		for(std::list< SharedPtr<PacketDecoder> >::iterator rxi(_rxQueue.begin());rxi!=_rxQueue.end();) {
			if ((*rxi)->tryDecode(_r))
				_rxQueue.erase(rxi++);
			else ++rxi;
		}
	}

	{
		Mutex::Lock _l(_txQueue_m);
		std::pair< std::multimap< Address,TXQueueEntry >::iterator,std::multimap< Address,TXQueueEntry >::iterator > waitingTxQueueItems(_txQueue.equal_range(peer->address()));
		for(std::multimap< Address,TXQueueEntry >::iterator txi(waitingTxQueueItems.first);txi!=waitingTxQueueItems.second;) {
			if (_trySend(txi->second.packet,txi->second.encrypt))
				_txQueue.erase(txi++);
			else ++txi;
		}
	}
}

const char *Switch::etherTypeName(const unsigned int etherType)
	throw()
{
	switch(etherType) {
		case ZT_ETHERTYPE_IPV4:  return "IPV4";
		case ZT_ETHERTYPE_ARP:   return "ARP";
		case ZT_ETHERTYPE_RARP:  return "RARP";
		case ZT_ETHERTYPE_ATALK: return "ATALK";
		case ZT_ETHERTYPE_AARP:  return "AARP";
		case ZT_ETHERTYPE_IPX_A: return "IPX_A";
		case ZT_ETHERTYPE_IPX_B: return "IPX_B";
		case ZT_ETHERTYPE_IPV6:  return "IPV6";
	}
	return "UNKNOWN";
}

void Switch::_handleRemotePacketFragment(Demarc::Port localPort,const InetAddress &fromAddr,const Buffer<4096> &data)
{
	Packet::Fragment fragment(data);
	Address destination(fragment.destination());

	if (destination != _r->identity.address()) {
		// Fragment is not for us, so try to relay it
		if (fragment.hops() < ZT_RELAY_MAX_HOPS) {
			fragment.incrementHops();

			SharedPtr<Peer> relayTo = _r->topology->getPeer(destination);
			if ((!relayTo)||(!relayTo->send(_r,fragment.data(),fragment.size(),Utils::now()))) {
				relayTo = _r->topology->getBestSupernode();
				if (relayTo)
					relayTo->send(_r,fragment.data(),fragment.size(),Utils::now());
			}
		} else {
			TRACE("dropped relay [fragment](%s) -> %s, max hops exceeded",fromAddr.toString().c_str(),destination.toString().c_str());
		}
	} else {
		// Fragment looks like ours
		uint64_t pid = fragment.packetId();
		unsigned int fno = fragment.fragmentNumber();
		unsigned int tf = fragment.totalFragments();

		if ((tf <= ZT_MAX_PACKET_FRAGMENTS)&&(fno < ZT_MAX_PACKET_FRAGMENTS)&&(fno > 0)&&(tf > 1)) {
			// Fragment appears basically sane. Its fragment number must be
			// 1 or more, since a Packet with fragmented bit set is fragment 0.
			// Total fragments must be more than 1, otherwise why are we
			// seeing a Packet::Fragment?

			Mutex::Lock _l(_defragQueue_m);
			std::map< uint64_t,DefragQueueEntry >::iterator dqe(_defragQueue.find(pid));

			if (dqe == _defragQueue.end()) {
				// We received a Packet::Fragment without its head, so queue it and wait

				DefragQueueEntry &dq = _defragQueue[pid];
				dq.creationTime = Utils::now();
				dq.frags[fno - 1] = fragment;
				dq.totalFragments = tf; // total fragment count is known
				dq.haveFragments = 1 << fno; // we have only this fragment
				//TRACE("fragment (%u/%u) of %.16llx from %s",fno + 1,tf,pid,fromAddr.toString().c_str());
			} else if (!(dqe->second.haveFragments & (1 << fno))) {
				// We have other fragments and maybe the head, so add this one and check

				dqe->second.frags[fno - 1] = fragment;
				dqe->second.totalFragments = tf;
				//TRACE("fragment (%u/%u) of %.16llx from %s",fno + 1,tf,pid,fromAddr.toString().c_str());

				if (Utils::countBits(dqe->second.haveFragments |= (1 << fno)) == tf) {
					// We have all fragments -- assemble and process full Packet
					//TRACE("packet %.16llx is complete, assembling and processing...",pid);

					SharedPtr<PacketDecoder> packet(dqe->second.frag0);
					for(unsigned int f=1;f<tf;++f)
						packet->append(dqe->second.frags[f - 1].payload(),dqe->second.frags[f - 1].payloadLength());
					_defragQueue.erase(dqe);

					if (!packet->tryDecode(_r)) {
						Mutex::Lock _l(_rxQueue_m);
						_rxQueue.push_back(packet);
					}
				}
			} // else this is a duplicate fragment, ignore
		}
	}
}

void Switch::_handleRemotePacketHead(Demarc::Port localPort,const InetAddress &fromAddr,const Buffer<4096> &data)
{
	SharedPtr<PacketDecoder> packet(new PacketDecoder(data,localPort,fromAddr));

	Address source(packet->source());
	Address destination(packet->destination());

	//TRACE("<< %.16llx %s -> %s (size: %u)",(unsigned long long)packet->packetId(),source.toString().c_str(),destination.toString().c_str(),packet->size());

	if (destination != _r->identity.address()) {
		// Packet is not for us, so try to relay it
		if (packet->hops() < ZT_RELAY_MAX_HOPS) {
			packet->incrementHops();

			SharedPtr<Peer> relayTo = _r->topology->getPeer(destination);
			if ((relayTo)&&(relayTo->send(_r,packet->data(),packet->size(),Utils::now()))) {
				// If we've relayed, this periodically tries to get them to
				// talk directly to save our bandwidth.
				unite(source,destination,false);
			} else {
				// If we've received a packet not for us and we don't have
				// a direct path to its recipient, pass it to (another)
				// supernode. This can happen due to Internet weather -- the
				// most direct supernode may not be reachable, yet another
				// further away may be.
				relayTo = _r->topology->getBestSupernode(&source,1,true);
				if (relayTo)
					relayTo->send(_r,packet->data(),packet->size(),Utils::now());
			}
		} else {
			TRACE("dropped relay %s(%s) -> %s, max hops exceeded",packet->source().toString().c_str(),fromAddr.toString().c_str(),destination.toString().c_str());
		}
	} else if (packet->fragmented()) {
		// Packet is the head of a fragmented packet series

		uint64_t pid = packet->packetId();
		Mutex::Lock _l(_defragQueue_m);
		std::map< uint64_t,DefragQueueEntry >::iterator dqe(_defragQueue.find(pid));

		if (dqe == _defragQueue.end()) {
			// If we have no other fragments yet, create an entry and save the head
			DefragQueueEntry &dq = _defragQueue[pid];
			dq.creationTime = Utils::now();
			dq.frag0 = packet;
			dq.totalFragments = 0; // 0 == unknown, waiting for Packet::Fragment
			dq.haveFragments = 1; // head is first bit (left to right)
			//TRACE("fragment (0/?) of %.16llx from %s",pid,fromAddr.toString().c_str());
		} else if (!(dqe->second.haveFragments & 1)) {
			// If we have other fragments but no head, see if we are complete with the head
			if ((dqe->second.totalFragments)&&(Utils::countBits(dqe->second.haveFragments |= 1) == dqe->second.totalFragments)) {
				// We have all fragments -- assemble and process full Packet

				//TRACE("packet %.16llx is complete, assembling and processing...",pid);
				// packet already contains head, so append fragments
				for(unsigned int f=1;f<dqe->second.totalFragments;++f)
					packet->append(dqe->second.frags[f - 1].payload(),dqe->second.frags[f - 1].payloadLength());
				_defragQueue.erase(dqe);

				if (!packet->tryDecode(_r)) {
					Mutex::Lock _l(_rxQueue_m);
					_rxQueue.push_back(packet);
				}
			} else {
				// Still waiting on more fragments, so queue the head
				dqe->second.frag0 = packet;
			}
		} // else this is a duplicate head, ignore
	} else {
		// Packet is unfragmented, so just process it
		if (!packet->tryDecode(_r)) {
			Mutex::Lock _l(_rxQueue_m);
			_rxQueue.push_back(packet);
		}
	}
}

Address Switch::_sendWhoisRequest(const Address &addr,const Address *peersAlreadyConsulted,unsigned int numPeersAlreadyConsulted)
{
	SharedPtr<Peer> supernode(_r->topology->getBestSupernode(peersAlreadyConsulted,numPeersAlreadyConsulted,false));
	if (supernode) {
		Packet outp(supernode->address(),_r->identity.address(),Packet::VERB_WHOIS);
		addr.appendTo(outp);
		outp.armor(supernode->key(),true);
		uint64_t now = Utils::now();
		if (supernode->send(_r,outp.data(),outp.size(),now))
			return supernode->address();
	}
	return Address();
}

bool Switch::_trySend(const Packet &packet,bool encrypt)
{
	SharedPtr<Peer> peer(_r->topology->getPeer(packet.destination()));

	if (peer) {
		uint64_t now = Utils::now();

		SharedPtr<Peer> via;
		if (peer->hasActiveDirectPath(now)) {
			via = peer;
		} else {
			via = _r->topology->getBestSupernode();
			if (!via)
				return false;
		}

		Packet tmp(packet);

		unsigned int chunkSize = std::min(tmp.size(),(unsigned int)ZT_UDP_DEFAULT_PAYLOAD_MTU);
		tmp.setFragmented(chunkSize < tmp.size());

		tmp.armor(peer->key(),encrypt);

		Demarc::Port localPort;
		if ((localPort = via->send(_r,tmp.data(),chunkSize,now))) {
			if (chunkSize < tmp.size()) {
				// Too big for one bite, fragment the rest
				unsigned int fragStart = chunkSize;
				unsigned int remaining = tmp.size() - chunkSize;
				unsigned int fragsRemaining = (remaining / (ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH));
				if ((fragsRemaining * (ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH)) < remaining)
					++fragsRemaining;
				unsigned int totalFragments = fragsRemaining + 1;

				for(unsigned int f=0;f<fragsRemaining;++f) {
					chunkSize = std::min(remaining,(unsigned int)(ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH));
					Packet::Fragment frag(tmp,fragStart,chunkSize,f + 1,totalFragments);
					if (!via->send(_r,frag.data(),frag.size(),now)) {
						TRACE("WARNING: packet send to %s failed on later fragment #%u (check IP layer buffer sizes?)",via->address().toString().c_str(),f + 1);
					}
					fragStart += chunkSize;
					remaining -= chunkSize;
				}
			}

#ifdef ZT_TRACE
			if (via != peer) {
				TRACE(">> %s to %s via %s (%d)",Packet::verbString(packet.verb()),peer->address().toString().c_str(),via->address().toString().c_str(),(int)packet.size());
			} else {
				TRACE(">> %s to %s (%d)",Packet::verbString(packet.verb()),peer->address().toString().c_str(),(int)packet.size());
			}
#endif

			return true;
		}
		return false;
	}

	requestWhois(packet.destination());
	return false;
}

} // namespace ZeroTier