summaryrefslogtreecommitdiff
path: root/node/Switch.cpp
blob: a6852d9f43184a019bbb93d83b09ebbfa93c2da3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
/*
 * ZeroTier One - Network Virtualization Everywhere
 * Copyright (C) 2011-2019  ZeroTier, Inc.  https://www.zerotier.com/
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program. If not, see <http://www.gnu.org/licenses/>.
 *
 * --
 *
 * You can be released from the requirements of the license by purchasing
 * a commercial license. Buying such a license is mandatory as soon as you
 * develop commercial closed-source software that incorporates or links
 * directly against ZeroTier software without disclosing the source code
 * of your own application.
 */

#include <stdio.h>
#include <stdlib.h>

#include <algorithm>
#include <utility>
#include <stdexcept>

#include "../version.h"
#include "../include/ZeroTierOne.h"

#include "Constants.hpp"
#include "RuntimeEnvironment.hpp"
#include "Switch.hpp"
#include "Node.hpp"
#include "InetAddress.hpp"
#include "Topology.hpp"
#include "Peer.hpp"
#include "SelfAwareness.hpp"
#include "Packet.hpp"
#include "Trace.hpp"

namespace ZeroTier {

Switch::Switch(const RuntimeEnvironment *renv) :
	RR(renv),
	_lastBeaconResponse(0),
	_lastCheckedQueues(0),
	_lastUniteAttempt(8) // only really used on root servers and upstreams, and it'll grow there just fine
{
}

void Switch::onRemotePacket(void *tPtr,const int64_t localSocket,const InetAddress &fromAddr,const void *data,unsigned int len)
{
	try {
		const int64_t now = RR->node->now();

		const SharedPtr<Path> path(RR->topology->getPath(localSocket,fromAddr));
		path->received(now);

		if (len == 13) {
			/* LEGACY: before VERB_PUSH_DIRECT_PATHS, peers used broadcast
			 * announcements on the LAN to solve the 'same network problem.' We
			 * no longer send these, but we'll listen for them for a while to
			 * locate peers with versions <1.0.4. */

			const Address beaconAddr(reinterpret_cast<const char *>(data) + 8,5);
			if (beaconAddr == RR->identity.address())
				return;
			if (!RR->node->shouldUsePathForZeroTierTraffic(tPtr,beaconAddr,localSocket,fromAddr))
				return;
			const SharedPtr<Peer> peer(RR->topology->getPeer(tPtr,beaconAddr));
			if (peer) { // we'll only respond to beacons from known peers
				if ((now - _lastBeaconResponse) >= 2500) { // limit rate of responses
					_lastBeaconResponse = now;
					Packet outp(peer->address(),RR->identity.address(),Packet::VERB_NOP);
					outp.armor(peer->key(),true);
					path->send(RR,tPtr,outp.data(),outp.size(),now);
				}
			}

		} else if (len > ZT_PROTO_MIN_FRAGMENT_LENGTH) { // SECURITY: min length check is important since we do some C-style stuff below!
			if (reinterpret_cast<const uint8_t *>(data)[ZT_PACKET_FRAGMENT_IDX_FRAGMENT_INDICATOR] == ZT_PACKET_FRAGMENT_INDICATOR) {
				// Handle fragment ----------------------------------------------------

				Packet::Fragment fragment(data,len);
				const Address destination(fragment.destination());

				if (destination != RR->identity.address()) {
					if ( (!RR->topology->amUpstream()) && (!path->trustEstablished(now)) )
						return;

					if (fragment.hops() < ZT_RELAY_MAX_HOPS) {
						fragment.incrementHops();

						// Note: we don't bother initiating NAT-t for fragments, since heads will set that off.
						// It wouldn't hurt anything, just redundant and unnecessary.
						SharedPtr<Peer> relayTo = RR->topology->getPeer(tPtr,destination);
						if ((!relayTo)||(!relayTo->sendDirect(tPtr,fragment.data(),fragment.size(),now,false))) {
							// Don't know peer or no direct path -- so relay via someone upstream
							relayTo = RR->topology->getUpstreamPeer();
							if (relayTo)
								relayTo->sendDirect(tPtr,fragment.data(),fragment.size(),now,true);
						}
					}
				} else {
					// Fragment looks like ours
					const uint64_t fragmentPacketId = fragment.packetId();
					const unsigned int fragmentNumber = fragment.fragmentNumber();
					const unsigned int totalFragments = fragment.totalFragments();

					if ((totalFragments <= ZT_MAX_PACKET_FRAGMENTS)&&(fragmentNumber < ZT_MAX_PACKET_FRAGMENTS)&&(fragmentNumber > 0)&&(totalFragments > 1)) {
						// Fragment appears basically sane. Its fragment number must be
						// 1 or more, since a Packet with fragmented bit set is fragment 0.
						// Total fragments must be more than 1, otherwise why are we
						// seeing a Packet::Fragment?

						RXQueueEntry *const rq = _findRXQueueEntry(fragmentPacketId);
						Mutex::Lock rql(rq->lock);
						if (rq->packetId != fragmentPacketId) {
							// No packet found, so we received a fragment without its head.

							rq->timestamp = now;
							rq->packetId = fragmentPacketId;
							rq->frags[fragmentNumber - 1] = fragment;
							rq->totalFragments = totalFragments; // total fragment count is known
							rq->haveFragments = 1 << fragmentNumber; // we have only this fragment
							rq->complete = false;
						} else if (!(rq->haveFragments & (1 << fragmentNumber))) {
							// We have other fragments and maybe the head, so add this one and check

							rq->frags[fragmentNumber - 1] = fragment;
							rq->totalFragments = totalFragments;

							if (Utils::countBits(rq->haveFragments |= (1 << fragmentNumber)) == totalFragments) {
								// We have all fragments -- assemble and process full Packet

								for(unsigned int f=1;f<totalFragments;++f)
									rq->frag0.append(rq->frags[f - 1].payload(),rq->frags[f - 1].payloadLength());

								if (rq->frag0.tryDecode(RR,tPtr)) {
									rq->timestamp = 0; // packet decoded, free entry
								} else {
									rq->complete = true; // set complete flag but leave entry since it probably needs WHOIS or something
								}
							}
						} // else this is a duplicate fragment, ignore
					}
				}

				// --------------------------------------------------------------------
			} else if (len >= ZT_PROTO_MIN_PACKET_LENGTH) { // min length check is important!
				// Handle packet head -------------------------------------------------

				const Address destination(reinterpret_cast<const uint8_t *>(data) + 8,ZT_ADDRESS_LENGTH);
				const Address source(reinterpret_cast<const uint8_t *>(data) + 13,ZT_ADDRESS_LENGTH);

				if (source == RR->identity.address())
					return;

				if (destination != RR->identity.address()) {
					if ( (!RR->topology->amUpstream()) && (!path->trustEstablished(now)) && (source != RR->identity.address()) )
						return;

					Packet packet(data,len);

					if (packet.hops() < ZT_RELAY_MAX_HOPS) {
						packet.incrementHops();
						SharedPtr<Peer> relayTo = RR->topology->getPeer(tPtr,destination);
						if ((relayTo)&&(relayTo->sendDirect(tPtr,packet.data(),packet.size(),now,false))) {
							if ((source != RR->identity.address())&&(_shouldUnite(now,source,destination))) {
								const SharedPtr<Peer> sourcePeer(RR->topology->getPeer(tPtr,source));
								if (sourcePeer)
									relayTo->introduce(tPtr,now,sourcePeer);
							}
						} else {
							relayTo = RR->topology->getUpstreamPeer();
							if ((relayTo)&&(relayTo->address() != source)) {
								if (relayTo->sendDirect(tPtr,packet.data(),packet.size(),now,true)) {
									const SharedPtr<Peer> sourcePeer(RR->topology->getPeer(tPtr,source));
									if (sourcePeer)
										relayTo->introduce(tPtr,now,sourcePeer);
								}
							}
						}
					}
				} else if ((reinterpret_cast<const uint8_t *>(data)[ZT_PACKET_IDX_FLAGS] & ZT_PROTO_FLAG_FRAGMENTED) != 0) {
					// Packet is the head of a fragmented packet series

					const uint64_t packetId = (
						(((uint64_t)reinterpret_cast<const uint8_t *>(data)[0]) << 56) |
						(((uint64_t)reinterpret_cast<const uint8_t *>(data)[1]) << 48) |
						(((uint64_t)reinterpret_cast<const uint8_t *>(data)[2]) << 40) |
						(((uint64_t)reinterpret_cast<const uint8_t *>(data)[3]) << 32) |
						(((uint64_t)reinterpret_cast<const uint8_t *>(data)[4]) << 24) |
						(((uint64_t)reinterpret_cast<const uint8_t *>(data)[5]) << 16) |
						(((uint64_t)reinterpret_cast<const uint8_t *>(data)[6]) << 8) |
						((uint64_t)reinterpret_cast<const uint8_t *>(data)[7])
					);

					RXQueueEntry *const rq = _findRXQueueEntry(packetId);
					Mutex::Lock rql(rq->lock);
					if (rq->packetId != packetId) {
						// If we have no other fragments yet, create an entry and save the head

						rq->timestamp = now;
						rq->packetId = packetId;
						rq->frag0.init(data,len,path,now);
						rq->totalFragments = 0;
						rq->haveFragments = 1;
						rq->complete = false;
					} else if (!(rq->haveFragments & 1)) {
						// If we have other fragments but no head, see if we are complete with the head

						if ((rq->totalFragments > 1)&&(Utils::countBits(rq->haveFragments |= 1) == rq->totalFragments)) {
							// We have all fragments -- assemble and process full Packet

							rq->frag0.init(data,len,path,now);
							for(unsigned int f=1;f<rq->totalFragments;++f)
								rq->frag0.append(rq->frags[f - 1].payload(),rq->frags[f - 1].payloadLength());

							if (rq->frag0.tryDecode(RR,tPtr)) {
								rq->timestamp = 0; // packet decoded, free entry
							} else {
								rq->complete = true; // set complete flag but leave entry since it probably needs WHOIS or something
							}
						} else {
							// Still waiting on more fragments, but keep the head
							rq->frag0.init(data,len,path,now);
						}
					} // else this is a duplicate head, ignore
				} else {
					// Packet is unfragmented, so just process it
					IncomingPacket packet(data,len,path,now);
					if (!packet.tryDecode(RR,tPtr)) {
						RXQueueEntry *const rq = _nextRXQueueEntry();
						Mutex::Lock rql(rq->lock);
						rq->timestamp = now;
						rq->packetId = packet.packetId();
						rq->frag0 = packet;
						rq->totalFragments = 1;
						rq->haveFragments = 1;
						rq->complete = true;
					}
				}

				// --------------------------------------------------------------------
			}
		}
	} catch ( ... ) {} // sanity check, should be caught elsewhere
}

void Switch::onLocalEthernet(void *tPtr,const SharedPtr<Network> &network,const MAC &from,const MAC &to,unsigned int etherType,unsigned int vlanId,const void *data,unsigned int len)
{
	if (!network->hasConfig())
		return;

	// Check if this packet is from someone other than the tap -- i.e. bridged in
	bool fromBridged;
	if ((fromBridged = (from != network->mac()))) {
		if (!network->config().permitsBridging(RR->identity.address())) {
			RR->t->outgoingNetworkFrameDropped(tPtr,network,from,to,etherType,vlanId,len,"not a bridge");
			return;
		}
	}

	uint8_t qosBucket = ZT_QOS_DEFAULT_BUCKET;

	if (to.isMulticast()) {
		MulticastGroup multicastGroup(to,0);

		if (to.isBroadcast()) {
			if ( (etherType == ZT_ETHERTYPE_ARP) && (len >= 28) && ((((const uint8_t *)data)[2] == 0x08)&&(((const uint8_t *)data)[3] == 0x00)&&(((const uint8_t *)data)[4] == 6)&&(((const uint8_t *)data)[5] == 4)&&(((const uint8_t *)data)[7] == 0x01)) ) {
				/* IPv4 ARP is one of the few special cases that we impose upon what is
				 * otherwise a straightforward Ethernet switch emulation. Vanilla ARP
				 * is dumb old broadcast and simply doesn't scale. ZeroTier multicast
				 * groups have an additional field called ADI (additional distinguishing
			   * information) which was added specifically for ARP though it could
				 * be used for other things too. We then take ARP broadcasts and turn
				 * them into multicasts by stuffing the IP address being queried into
				 * the 32-bit ADI field. In practice this uses our multicast pub/sub
				 * system to implement a kind of extended/distributed ARP table. */
				multicastGroup = MulticastGroup::deriveMulticastGroupForAddressResolution(InetAddress(((const unsigned char *)data) + 24,4,0));
			} else if (!network->config().enableBroadcast()) {
				// Don't transmit broadcasts if this network doesn't want them
				RR->t->outgoingNetworkFrameDropped(tPtr,network,from,to,etherType,vlanId,len,"broadcast disabled");
				return;
			}
		} else if ((etherType == ZT_ETHERTYPE_IPV6)&&(len >= (40 + 8 + 16))) {
			// IPv6 NDP emulation for certain very special patterns of private IPv6 addresses -- if enabled
			if ((network->config().ndpEmulation())&&(reinterpret_cast<const uint8_t *>(data)[6] == 0x3a)&&(reinterpret_cast<const uint8_t *>(data)[40] == 0x87)) { // ICMPv6 neighbor solicitation
				Address v6EmbeddedAddress;
				const uint8_t *const pkt6 = reinterpret_cast<const uint8_t *>(data) + 40 + 8;
				const uint8_t *my6 = (const uint8_t *)0;

				// ZT-RFC4193 address: fdNN:NNNN:NNNN:NNNN:NN99:93DD:DDDD:DDDD / 88 (one /128 per actual host)

				// ZT-6PLANE address:  fcXX:XXXX:XXDD:DDDD:DDDD:####:####:#### / 40 (one /80 per actual host)
				// (XX - lower 32 bits of network ID XORed with higher 32 bits)

				// For these to work, we must have a ZT-managed address assigned in one of the
				// above formats, and the query must match its prefix.
				for(unsigned int sipk=0;sipk<network->config().staticIpCount;++sipk) {
					const InetAddress *const sip = &(network->config().staticIps[sipk]);
					if (sip->ss_family == AF_INET6) {
						my6 = reinterpret_cast<const uint8_t *>(reinterpret_cast<const struct sockaddr_in6 *>(&(*sip))->sin6_addr.s6_addr);
						const unsigned int sipNetmaskBits = Utils::ntoh((uint16_t)reinterpret_cast<const struct sockaddr_in6 *>(&(*sip))->sin6_port);
						if ((sipNetmaskBits == 88)&&(my6[0] == 0xfd)&&(my6[9] == 0x99)&&(my6[10] == 0x93)) { // ZT-RFC4193 /88 ???
							unsigned int ptr = 0;
							while (ptr != 11) {
								if (pkt6[ptr] != my6[ptr])
									break;
								++ptr;
							}
							if (ptr == 11) { // prefix match!
								v6EmbeddedAddress.setTo(pkt6 + ptr,5);
								break;
							}
						} else if (sipNetmaskBits == 40) { // ZT-6PLANE /40 ???
							const uint32_t nwid32 = (uint32_t)((network->id() ^ (network->id() >> 32)) & 0xffffffff);
							if ( (my6[0] == 0xfc) && (my6[1] == (uint8_t)((nwid32 >> 24) & 0xff)) && (my6[2] == (uint8_t)((nwid32 >> 16) & 0xff)) && (my6[3] == (uint8_t)((nwid32 >> 8) & 0xff)) && (my6[4] == (uint8_t)(nwid32 & 0xff))) {
								unsigned int ptr = 0;
								while (ptr != 5) {
									if (pkt6[ptr] != my6[ptr])
										break;
									++ptr;
								}
								if (ptr == 5) { // prefix match!
									v6EmbeddedAddress.setTo(pkt6 + ptr,5);
									break;
								}
							}
						}
					}
				}

				if ((v6EmbeddedAddress)&&(v6EmbeddedAddress != RR->identity.address())) {
					const MAC peerMac(v6EmbeddedAddress,network->id());

					uint8_t adv[72];
					adv[0] = 0x60; adv[1] = 0x00; adv[2] = 0x00; adv[3] = 0x00;
					adv[4] = 0x00; adv[5] = 0x20;
					adv[6] = 0x3a; adv[7] = 0xff;
					for(int i=0;i<16;++i) adv[8 + i] = pkt6[i];
					for(int i=0;i<16;++i) adv[24 + i] = my6[i];
					adv[40] = 0x88; adv[41] = 0x00;
					adv[42] = 0x00; adv[43] = 0x00; // future home of checksum
					adv[44] = 0x60; adv[45] = 0x00; adv[46] = 0x00; adv[47] = 0x00;
					for(int i=0;i<16;++i) adv[48 + i] = pkt6[i];
					adv[64] = 0x02; adv[65] = 0x01;
					adv[66] = peerMac[0]; adv[67] = peerMac[1]; adv[68] = peerMac[2]; adv[69] = peerMac[3]; adv[70] = peerMac[4]; adv[71] = peerMac[5];

					uint16_t pseudo_[36];
					uint8_t *const pseudo = reinterpret_cast<uint8_t *>(pseudo_);
					for(int i=0;i<32;++i) pseudo[i] = adv[8 + i];
					pseudo[32] = 0x00; pseudo[33] = 0x00; pseudo[34] = 0x00; pseudo[35] = 0x20;
					pseudo[36] = 0x00; pseudo[37] = 0x00; pseudo[38] = 0x00; pseudo[39] = 0x3a;
					for(int i=0;i<32;++i) pseudo[40 + i] = adv[40 + i];
					uint32_t checksum = 0;
					for(int i=0;i<36;++i) checksum += Utils::hton(pseudo_[i]);
					while ((checksum >> 16)) checksum = (checksum & 0xffff) + (checksum >> 16);
					checksum = ~checksum;
					adv[42] = (checksum >> 8) & 0xff;
					adv[43] = checksum & 0xff;

					RR->node->putFrame(tPtr,network->id(),network->userPtr(),peerMac,from,ZT_ETHERTYPE_IPV6,0,adv,72);
					return; // NDP emulation done. We have forged a "fake" reply, so no need to send actual NDP query.
				} // else no NDP emulation
			} // else no NDP emulation
		}

		// Check this after NDP emulation, since that has to be allowed in exactly this case
		if (network->config().multicastLimit == 0) {
			RR->t->outgoingNetworkFrameDropped(tPtr,network,from,to,etherType,vlanId,len,"multicast disabled");
			return;
		}

		/* Learn multicast groups for bridged-in hosts.
		 * Note that some OSes, most notably Linux, do this for you by learning
		 * multicast addresses on bridge interfaces and subscribing each slave.
		 * But in that case this does no harm, as the sets are just merged. */
		if (fromBridged)
			network->learnBridgedMulticastGroup(tPtr,multicastGroup,RR->node->now());

		// First pass sets noTee to false, but noTee is set to true in OutboundMulticast to prevent duplicates.
		if (!network->filterOutgoingPacket(tPtr,false,RR->identity.address(),Address(),from,to,(const uint8_t *)data,len,etherType,vlanId,qosBucket)) {
			RR->t->outgoingNetworkFrameDropped(tPtr,network,from,to,etherType,vlanId,len,"filter blocked");
			return;
		}

		RR->mc->send(
			tPtr,
			RR->node->now(),
			network,
			Address(),
			multicastGroup,
			(fromBridged) ? from : MAC(),
			etherType,
			data,
			len);
	} else if (to == network->mac()) {
		// Destination is this node, so just reinject it
		RR->node->putFrame(tPtr,network->id(),network->userPtr(),from,to,etherType,vlanId,data,len);
	} else if (to[0] == MAC::firstOctetForNetwork(network->id())) {
		// Destination is another ZeroTier peer on the same network

		Address toZT(to.toAddress(network->id())); // since in-network MACs are derived from addresses and network IDs, we can reverse this
		SharedPtr<Peer> toPeer(RR->topology->getPeer(tPtr,toZT));

		if (!network->filterOutgoingPacket(tPtr,false,RR->identity.address(),toZT,from,to,(const uint8_t *)data,len,etherType,vlanId,qosBucket)) {
			RR->t->outgoingNetworkFrameDropped(tPtr,network,from,to,etherType,vlanId,len,"filter blocked");
			return;
		}

		network->pushCredentialsIfNeeded(tPtr,toZT,RR->node->now());

		if (fromBridged) {
			Packet outp(toZT,RR->identity.address(),Packet::VERB_EXT_FRAME);
			outp.append(network->id());
			outp.append((unsigned char)0x00);
			to.appendTo(outp);
			from.appendTo(outp);
			outp.append((uint16_t)etherType);
			outp.append(data,len);
			if (!network->config().disableCompression())
				outp.compress();
			aqm_enqueue(tPtr,network,outp,true,qosBucket);
		} else {
			Packet outp(toZT,RR->identity.address(),Packet::VERB_FRAME);
			outp.append(network->id());
			outp.append((uint16_t)etherType);
			outp.append(data,len);
			if (!network->config().disableCompression())
				outp.compress();
			aqm_enqueue(tPtr,network,outp,true,qosBucket);
		}
	} else {
		// Destination is bridged behind a remote peer

		// We filter with a NULL destination ZeroTier address first. Filtrations
		// for each ZT destination are also done below. This is the same rationale
		// and design as for multicast.
		if (!network->filterOutgoingPacket(tPtr,false,RR->identity.address(),Address(),from,to,(const uint8_t *)data,len,etherType,vlanId,qosBucket)) {
			RR->t->outgoingNetworkFrameDropped(tPtr,network,from,to,etherType,vlanId,len,"filter blocked");
			return;
		}

		Address bridges[ZT_MAX_BRIDGE_SPAM];
		unsigned int numBridges = 0;

		/* Create an array of up to ZT_MAX_BRIDGE_SPAM recipients for this bridged frame. */
		bridges[0] = network->findBridgeTo(to);
		std::vector<Address> activeBridges(network->config().activeBridges());
		if ((bridges[0])&&(bridges[0] != RR->identity.address())&&(network->config().permitsBridging(bridges[0]))) {
			/* We have a known bridge route for this MAC, send it there. */
			++numBridges;
		} else if (!activeBridges.empty()) {
			/* If there is no known route, spam to up to ZT_MAX_BRIDGE_SPAM active
			 * bridges. If someone responds, we'll learn the route. */
			std::vector<Address>::const_iterator ab(activeBridges.begin());
			if (activeBridges.size() <= ZT_MAX_BRIDGE_SPAM) {
				// If there are <= ZT_MAX_BRIDGE_SPAM active bridges, spam them all
				while (ab != activeBridges.end()) {
					bridges[numBridges++] = *ab;
					++ab;
				}
			} else {
				// Otherwise pick a random set of them
				while (numBridges < ZT_MAX_BRIDGE_SPAM) {
					if (ab == activeBridges.end())
						ab = activeBridges.begin();
					if (((unsigned long)RR->node->prng() % (unsigned long)activeBridges.size()) == 0) {
						bridges[numBridges++] = *ab;
						++ab;
					} else ++ab;
				}
			}
		}

		for(unsigned int b=0;b<numBridges;++b) {
			if (network->filterOutgoingPacket(tPtr,true,RR->identity.address(),bridges[b],from,to,(const uint8_t *)data,len,etherType,vlanId,qosBucket)) {
				Packet outp(bridges[b],RR->identity.address(),Packet::VERB_EXT_FRAME);
				outp.append(network->id());
				outp.append((uint8_t)0x00);
				to.appendTo(outp);
				from.appendTo(outp);
				outp.append((uint16_t)etherType);
				outp.append(data,len);
				if (!network->config().disableCompression())
					outp.compress();
				aqm_enqueue(tPtr,network,outp,true,qosBucket);
			} else {
				RR->t->outgoingNetworkFrameDropped(tPtr,network,from,to,etherType,vlanId,len,"filter blocked (bridge replication)");
			}
		}
	}
}

void Switch::aqm_enqueue(void *tPtr, const SharedPtr<Network> &network, Packet &packet,bool encrypt,int qosBucket)
{
	if(!network->qosEnabled()) {
		send(tPtr, packet, encrypt);
		return;
	}
	NetworkQoSControlBlock *nqcb = _netQueueControlBlock[network->id()];
	if (!nqcb) {
		// DEBUG_INFO("creating network QoS control block (NQCB) for network %llx", network->id());
		nqcb = new NetworkQoSControlBlock();
		_netQueueControlBlock[network->id()] = nqcb;
		// Initialize ZT_QOS_NUM_BUCKETS queues and place them in the INACTIVE list
		// These queues will be shuffled between the new/old/inactive lists by the enqueue/dequeue algorithm
		for (int i=0; i<ZT_QOS_NUM_BUCKETS; i++) {
			nqcb->inactiveQueues.push_back(new ManagedQueue(i));
		}
	}

	if (packet.verb() != Packet::VERB_FRAME && packet.verb() != Packet::VERB_EXT_FRAME) {
		// DEBUG_INFO("skipping, no QoS for this packet, verb=%x", packet.verb());
		// just send packet normally, no QoS for ZT protocol traffic
		send(tPtr, packet, encrypt);
	} 

	_aqm_m.lock();

	// Enqueue packet and move queue to appropriate list

	const Address dest(packet.destination());
	TXQueueEntry *txEntry = new TXQueueEntry(dest,RR->node->now(),packet,encrypt);
	
	ManagedQueue *selectedQueue = nullptr;
	for (size_t i=0; i<ZT_QOS_NUM_BUCKETS; i++) {
		if (i < nqcb->oldQueues.size()) { // search old queues first (I think this is best since old would imply most recent usage of the queue)
			if (nqcb->oldQueues[i]->id == qosBucket) {
				selectedQueue = nqcb->oldQueues[i];
			}
		} if (i < nqcb->newQueues.size()) { // search new queues (this would imply not often-used queues)
			if (nqcb->newQueues[i]->id == qosBucket) {
				selectedQueue = nqcb->newQueues[i];
			}
		} if (i < nqcb->inactiveQueues.size()) { // search inactive queues
			if (nqcb->inactiveQueues[i]->id == qosBucket) {
				selectedQueue = nqcb->inactiveQueues[i];
				// move queue to end of NEW queue list
				selectedQueue->byteCredit = ZT_QOS_QUANTUM;
				// DEBUG_INFO("moving q=%p from INACTIVE to NEW list", selectedQueue);
				nqcb->newQueues.push_back(selectedQueue);
				nqcb->inactiveQueues.erase(nqcb->inactiveQueues.begin() + i);
			}
		}
	}
	if (!selectedQueue) {
		return;
	}

	selectedQueue->q.push_back(txEntry);
	selectedQueue->byteLength+=txEntry->packet.payloadLength();
	nqcb->_currEnqueuedPackets++;

	// DEBUG_INFO("nq=%2lu, oq=%2lu, iq=%2lu, nqcb.size()=%3d, bucket=%2d, q=%p", nqcb->newQueues.size(), nqcb->oldQueues.size(), nqcb->inactiveQueues.size(), nqcb->_currEnqueuedPackets, qosBucket, selectedQueue);

	// Drop a packet if necessary
	ManagedQueue *selectedQueueToDropFrom = nullptr;
	if (nqcb->_currEnqueuedPackets > ZT_QOS_MAX_ENQUEUED_PACKETS)
	{
		// DEBUG_INFO("too many enqueued packets (%d), finding packet to drop", nqcb->_currEnqueuedPackets);
		int maxQueueLength = 0;
		for (size_t i=0; i<ZT_QOS_NUM_BUCKETS; i++) {
			if (i < nqcb->oldQueues.size()) {
				if (nqcb->oldQueues[i]->byteLength > maxQueueLength) {
					maxQueueLength = nqcb->oldQueues[i]->byteLength;
					selectedQueueToDropFrom = nqcb->oldQueues[i];
				}
			} if (i < nqcb->newQueues.size()) {
				if (nqcb->newQueues[i]->byteLength > maxQueueLength) {
					maxQueueLength = nqcb->newQueues[i]->byteLength;
					selectedQueueToDropFrom = nqcb->newQueues[i];
				}
			} if (i < nqcb->inactiveQueues.size()) {
				if (nqcb->inactiveQueues[i]->byteLength > maxQueueLength) {
					maxQueueLength = nqcb->inactiveQueues[i]->byteLength;
					selectedQueueToDropFrom = nqcb->inactiveQueues[i];
				}
			}
		}
		if (selectedQueueToDropFrom) {
			// DEBUG_INFO("dropping packet from head of largest queue (%d payload bytes)", maxQueueLength);
			int sizeOfDroppedPacket = selectedQueueToDropFrom->q.front()->packet.payloadLength();
			delete selectedQueueToDropFrom->q.front();
			selectedQueueToDropFrom->q.pop_front();
			selectedQueueToDropFrom->byteLength-=sizeOfDroppedPacket;
			nqcb->_currEnqueuedPackets--;
		}
	}
	_aqm_m.unlock();
	aqm_dequeue(tPtr);
}

uint64_t Switch::control_law(uint64_t t, int count)
{
	return (uint64_t)(t + ZT_QOS_INTERVAL / sqrt(count));
}

Switch::dqr Switch::dodequeue(ManagedQueue *q, uint64_t now) 
{
	dqr r;
	r.ok_to_drop = false;
	r.p = q->q.front();

	if (r.p == NULL) {
		q->first_above_time = 0;
		return r;
	}
	uint64_t sojourn_time = now - r.p->creationTime;
	if (sojourn_time < ZT_QOS_TARGET || q->byteLength <= ZT_DEFAULT_MTU) {
		// went below - stay below for at least interval
		q->first_above_time = 0;
	} else {
		if (q->first_above_time == 0) {
			// just went above from below. if still above at
			// first_above_time, will say it's ok to drop.
			q->first_above_time = now + ZT_QOS_INTERVAL;
		} else if (now >= q->first_above_time) {
			r.ok_to_drop = true;
		}
	}
	return r;
}

Switch::TXQueueEntry * Switch::CoDelDequeue(ManagedQueue *q, bool isNew, uint64_t now)
{
	dqr r = dodequeue(q, now);

	if (q->dropping) {
		if (!r.ok_to_drop) {
			q->dropping = false;
		}
		while (now >= q->drop_next && q->dropping) {
			q->q.pop_front(); // drop
			r = dodequeue(q, now);
			if (!r.ok_to_drop) {
				// leave dropping state
				q->dropping = false;
			} else {
				++(q->count);
				// schedule the next drop.
				q->drop_next = control_law(q->drop_next, q->count);
			}
		}
	} else if (r.ok_to_drop) {
		q->q.pop_front(); // drop
		r = dodequeue(q, now);
		q->dropping = true;
		q->count = (q->count > 2 && now - q->drop_next < 8*ZT_QOS_INTERVAL)?
		q->count - 2 : 1;
		q->drop_next = control_law(now, q->count);
	}
	return r.p;
}

void Switch::aqm_dequeue(void *tPtr)
{
	// Cycle through network-specific QoS control blocks
	for(std::map<uint64_t,NetworkQoSControlBlock*>::iterator nqcb(_netQueueControlBlock.begin());nqcb!=_netQueueControlBlock.end();) {
		if (!(*nqcb).second->_currEnqueuedPackets) {
			return;
		}

		uint64_t now = RR->node->now();
		TXQueueEntry *entryToEmit = nullptr;
		std::vector<ManagedQueue*> *currQueues = &((*nqcb).second->newQueues);
		std::vector<ManagedQueue*> *oldQueues = &((*nqcb).second->oldQueues);
		std::vector<ManagedQueue*> *inactiveQueues = &((*nqcb).second->inactiveQueues);

		_aqm_m.lock();

		// Attempt dequeue from queues in NEW list
		bool examiningNewQueues = true;
		while (currQueues->size()) {
			ManagedQueue *queueAtFrontOfList = currQueues->front();
			if (queueAtFrontOfList->byteCredit < 0) {
				queueAtFrontOfList->byteCredit += ZT_QOS_QUANTUM;
				// Move to list of OLD queues
				// DEBUG_INFO("moving q=%p from NEW to OLD list", queueAtFrontOfList);
				oldQueues->push_back(queueAtFrontOfList);
				currQueues->erase(currQueues->begin());
			} else {
				entryToEmit = CoDelDequeue(queueAtFrontOfList, examiningNewQueues, now);
				if (!entryToEmit) {
					// Move to end of list of OLD queues
					// DEBUG_INFO("moving q=%p from NEW to OLD list", queueAtFrontOfList);
					oldQueues->push_back(queueAtFrontOfList);
					currQueues->erase(currQueues->begin());
				}
				else {
					int len = entryToEmit->packet.payloadLength();
					queueAtFrontOfList->byteLength -= len;
					queueAtFrontOfList->byteCredit -= len;
					// Send the packet!
					queueAtFrontOfList->q.pop_front();
					send(tPtr, entryToEmit->packet, entryToEmit->encrypt);
					(*nqcb).second->_currEnqueuedPackets--;
				}
				if (queueAtFrontOfList) {
					//DEBUG_INFO("dequeuing from q=%p, len=%lu in NEW list (byteCredit=%d)", queueAtFrontOfList, queueAtFrontOfList->q.size(), queueAtFrontOfList->byteCredit);
				}
				break;
			}
		}

		// Attempt dequeue from queues in OLD list
		examiningNewQueues = false;
		currQueues = &((*nqcb).second->oldQueues);
		while (currQueues->size()) {
			ManagedQueue *queueAtFrontOfList = currQueues->front();
			if (queueAtFrontOfList->byteCredit < 0) {
				queueAtFrontOfList->byteCredit += ZT_QOS_QUANTUM;
				oldQueues->push_back(queueAtFrontOfList);
				currQueues->erase(currQueues->begin());
			} else {
				entryToEmit = CoDelDequeue(queueAtFrontOfList, examiningNewQueues, now);
				if (!entryToEmit) {
					//DEBUG_INFO("moving q=%p from OLD to INACTIVE list", queueAtFrontOfList);
					// Move to inactive list of queues
					inactiveQueues->push_back(queueAtFrontOfList);
					currQueues->erase(currQueues->begin());
				}
				else {
					int len = entryToEmit->packet.payloadLength();
					queueAtFrontOfList->byteLength -= len;
					queueAtFrontOfList->byteCredit -= len;
					queueAtFrontOfList->q.pop_front();
					send(tPtr, entryToEmit->packet, entryToEmit->encrypt);
					(*nqcb).second->_currEnqueuedPackets--;
				}
				if (queueAtFrontOfList) {
					//DEBUG_INFO("dequeuing from q=%p, len=%lu in OLD list (byteCredit=%d)", queueAtFrontOfList, queueAtFrontOfList->q.size(), queueAtFrontOfList->byteCredit);
				}
				break;
			}
		}
		nqcb++;
		_aqm_m.unlock();
	}
}

void Switch::removeNetworkQoSControlBlock(uint64_t nwid)
{
	NetworkQoSControlBlock *nq = _netQueueControlBlock[nwid];
	if (nq) {
		_netQueueControlBlock.erase(nwid);
		delete nq;
		nq = NULL;
	}
}

void Switch::send(void *tPtr,Packet &packet,bool encrypt)
{
	const Address dest(packet.destination());
	if (dest == RR->identity.address())
		return;
	if (!_trySend(tPtr,packet,encrypt)) {
		{
			Mutex::Lock _l(_txQueue_m);
			if (_txQueue.size() >= ZT_TX_QUEUE_SIZE) {
				_txQueue.pop_front();
			}
			_txQueue.push_back(TXQueueEntry(dest,RR->node->now(),packet,encrypt));
		}
		if (!RR->topology->getPeer(tPtr,dest))
			requestWhois(tPtr,RR->node->now(),dest);
	}
}

void Switch::requestWhois(void *tPtr,const int64_t now,const Address &addr)
{
	if (addr == RR->identity.address())
		return;

	{
		Mutex::Lock _l(_lastSentWhoisRequest_m);
		int64_t &last = _lastSentWhoisRequest[addr];
		if ((now - last) < ZT_WHOIS_RETRY_DELAY)
			return;
		else last = now;
	}

	const SharedPtr<Peer> upstream(RR->topology->getUpstreamPeer());
	if (upstream) {
		Packet outp(upstream->address(),RR->identity.address(),Packet::VERB_WHOIS);
		addr.appendTo(outp);
		RR->node->expectReplyTo(outp.packetId());
		send(tPtr,outp,true);
	}
}

void Switch::doAnythingWaitingForPeer(void *tPtr,const SharedPtr<Peer> &peer)
{
	{
		Mutex::Lock _l(_lastSentWhoisRequest_m);
		_lastSentWhoisRequest.erase(peer->address());
	}

	const int64_t now = RR->node->now();
	for(unsigned int ptr=0;ptr<ZT_RX_QUEUE_SIZE;++ptr) {
		RXQueueEntry *const rq = &(_rxQueue[ptr]);
		Mutex::Lock rql(rq->lock);
		if ((rq->timestamp)&&(rq->complete)) {
			if ((rq->frag0.tryDecode(RR,tPtr))||((now - rq->timestamp) > ZT_RECEIVE_QUEUE_TIMEOUT))
				rq->timestamp = 0;
		}
	}

	{
		Mutex::Lock _l(_txQueue_m);
		for(std::list< TXQueueEntry >::iterator txi(_txQueue.begin());txi!=_txQueue.end();) {
			if (txi->dest == peer->address()) {
				if (_trySend(tPtr,txi->packet,txi->encrypt)) {
					_txQueue.erase(txi++);
				} else {
					++txi;
				}
			} else {
				++txi;
			}
		}
	}
}

unsigned long Switch::doTimerTasks(void *tPtr,int64_t now)
{
	const uint64_t timeSinceLastCheck = now - _lastCheckedQueues;
	if (timeSinceLastCheck < ZT_WHOIS_RETRY_DELAY)
		return (unsigned long)(ZT_WHOIS_RETRY_DELAY - timeSinceLastCheck);
	_lastCheckedQueues = now;

	std::vector<Address> needWhois;
	{
		Mutex::Lock _l(_txQueue_m);

		for(std::list< TXQueueEntry >::iterator txi(_txQueue.begin());txi!=_txQueue.end();) {
			if (_trySend(tPtr,txi->packet,txi->encrypt)) {
				_txQueue.erase(txi++);
			} else if ((now - txi->creationTime) > ZT_TRANSMIT_QUEUE_TIMEOUT) {
				_txQueue.erase(txi++);
			} else {
				if (!RR->topology->getPeer(tPtr,txi->dest))
					needWhois.push_back(txi->dest);
				++txi;
			}
		}
	}
	for(std::vector<Address>::const_iterator i(needWhois.begin());i!=needWhois.end();++i)
		requestWhois(tPtr,now,*i);

	for(unsigned int ptr=0;ptr<ZT_RX_QUEUE_SIZE;++ptr) {
		RXQueueEntry *const rq = &(_rxQueue[ptr]);
		Mutex::Lock rql(rq->lock);
		if ((rq->timestamp)&&(rq->complete)) {
			if ((rq->frag0.tryDecode(RR,tPtr))||((now - rq->timestamp) > ZT_RECEIVE_QUEUE_TIMEOUT)) {
				rq->timestamp = 0;
			} else {
				const Address src(rq->frag0.source());
				if (!RR->topology->getPeer(tPtr,src))
					requestWhois(tPtr,now,src);
			}
		}
	}

	{
		Mutex::Lock _l(_lastUniteAttempt_m);
		Hashtable< _LastUniteKey,uint64_t >::Iterator i(_lastUniteAttempt);
		_LastUniteKey *k = (_LastUniteKey *)0;
		uint64_t *v = (uint64_t *)0;
		while (i.next(k,v)) {
			if ((now - *v) >= (ZT_MIN_UNITE_INTERVAL * 8))
				_lastUniteAttempt.erase(*k);
		}
	}

	{
		Mutex::Lock _l(_lastSentWhoisRequest_m);
		Hashtable< Address,int64_t >::Iterator i(_lastSentWhoisRequest);
		Address *a = (Address *)0;
		int64_t *ts = (int64_t *)0;
		while (i.next(a,ts)) {
			if ((now - *ts) > (ZT_WHOIS_RETRY_DELAY * 2))
				_lastSentWhoisRequest.erase(*a);
		}
	}

	return ZT_WHOIS_RETRY_DELAY;
}

bool Switch::_shouldUnite(const int64_t now,const Address &source,const Address &destination)
{
	Mutex::Lock _l(_lastUniteAttempt_m);
	uint64_t &ts = _lastUniteAttempt[_LastUniteKey(source,destination)];
	if ((now - ts) >= ZT_MIN_UNITE_INTERVAL) {
		ts = now;
		return true;
	}
	return false;
}

bool Switch::_trySend(void *tPtr,Packet &packet,bool encrypt)
{
	SharedPtr<Path> viaPath;
	const int64_t now = RR->node->now();
	const Address destination(packet.destination());

	const SharedPtr<Peer> peer(RR->topology->getPeer(tPtr,destination));
	if (peer) {
		viaPath = peer->getAppropriatePath(now,false);
		if (!viaPath) {
			peer->tryMemorizedPath(tPtr,now); // periodically attempt memorized or statically defined paths, if any are known
			const SharedPtr<Peer> relay(RR->topology->getUpstreamPeer());
			if ( (!relay) || (!(viaPath = relay->getAppropriatePath(now,false))) ) {
				if (!(viaPath = peer->getAppropriatePath(now,true)))
					return false;
			}
		}
	} else {
		return false;
	}

	unsigned int mtu = ZT_DEFAULT_PHYSMTU;
	uint64_t trustedPathId = 0;
	RR->topology->getOutboundPathInfo(viaPath->address(),mtu,trustedPathId);

	unsigned int chunkSize = std::min(packet.size(),mtu);
	packet.setFragmented(chunkSize < packet.size());

	peer->recordOutgoingPacket(viaPath, packet.packetId(), packet.payloadLength(), packet.verb(), now);

	if (trustedPathId) {
		packet.setTrusted(trustedPathId);
	} else {
		packet.armor(peer->key(),encrypt);
	}

	if (viaPath->send(RR,tPtr,packet.data(),chunkSize,now)) {
		if (chunkSize < packet.size()) {
			// Too big for one packet, fragment the rest
			unsigned int fragStart = chunkSize;
			unsigned int remaining = packet.size() - chunkSize;
			unsigned int fragsRemaining = (remaining / (mtu - ZT_PROTO_MIN_FRAGMENT_LENGTH));
			if ((fragsRemaining * (mtu - ZT_PROTO_MIN_FRAGMENT_LENGTH)) < remaining)
				++fragsRemaining;
			const unsigned int totalFragments = fragsRemaining + 1;

			for(unsigned int fno=1;fno<totalFragments;++fno) {
				chunkSize = std::min(remaining,(unsigned int)(mtu - ZT_PROTO_MIN_FRAGMENT_LENGTH));
				Packet::Fragment frag(packet,fragStart,chunkSize,fno,totalFragments);
				viaPath->send(RR,tPtr,frag.data(),frag.size(),now);
				fragStart += chunkSize;
				remaining -= chunkSize;
			}
		}
	}

	return true;
}

} // namespace ZeroTier