1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
|
/* Support of PKCS#1 private key data structures
* Copyright (C) 2005 Jan Hutter, Martin Willi
* Copyright (C) 2002-2005 Andreas Steffen
* Hochschule fuer Technik Rapperswil, Switzerland
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version. See <http://www.fsf.org/copyleft/gpl.txt>.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* RCSID $Id: pkcs1.h,v 1.14 2005/12/06 22:52:12 as Exp $
*/
#ifndef _PKCS1_H
#define _PKCS1_H
#include <gmp.h> /* GNU Multi Precision library */
#include "defs.h"
typedef struct RSA_public_key RSA_public_key_t;
struct RSA_public_key
{
char keyid[KEYID_BUF]; /* see ipsec_keyblobtoid(3) */
/* length of modulus n in octets: [RSA_MIN_OCTETS, RSA_MAX_OCTETS] */
unsigned k;
/* public: */
MP_INT
n, /* modulus: p * q */
e; /* exponent: relatively prime to (p-1) * (q-1) [probably small] */
};
typedef struct RSA_private_key RSA_private_key_t;
struct RSA_private_key {
struct RSA_public_key pub; /* must be at start for RSA_show_public_key */
MP_INT
d, /* private exponent: (e^-1) mod ((p-1) * (q-1)) */
/* help for Chinese Remainder Theorem speedup: */
p, /* first secret prime */
q, /* second secret prime */
dP, /* first factor's exponent: (e^-1) mod (p-1) == d mod (p-1) */
dQ, /* second factor's exponent: (e^-1) mod (q-1) == d mod (q-1) */
qInv; /* (q^-1) mod p */
};
struct fld {
const char *name;
size_t offset;
};
extern const struct fld RSA_private_field[];
#define RSA_PRIVATE_FIELD_ELEMENTS 8
extern void init_RSA_public_key(RSA_public_key_t *rsa, chunk_t e, chunk_t n);
extern bool pkcs1_parse_private_key(chunk_t blob, RSA_private_key_t *key);
extern chunk_t pkcs1_build_private_key(const RSA_private_key_t *key);
extern chunk_t pkcs1_build_public_key(const RSA_public_key_t *rsa);
extern chunk_t pkcs1_build_publicKeyInfo(const RSA_public_key_t *rsa);
extern chunk_t pkcs1_build_signature(chunk_t tbs, int hash_alg
, const RSA_private_key_t *key, bool bit_string);
extern bool compute_digest(chunk_t tbs, int alg, chunk_t *digest);
extern void sign_hash(const RSA_private_key_t *k, const u_char *hash_val
, size_t hash_len, u_char *sig_val, size_t sig_len);
extern chunk_t RSA_encrypt(const RSA_public_key_t *key, chunk_t in);
extern bool RSA_decrypt(const RSA_private_key_t *key, chunk_t in
, chunk_t *out);
extern bool same_RSA_public_key(const RSA_public_key_t *a
, const RSA_public_key_t *b);
extern void form_keyid(chunk_t e, chunk_t n, char* keyid, unsigned *keysize);
extern err_t RSA_private_key_sanity(RSA_private_key_t *k);
#ifdef DEBUG
extern void RSA_show_public_key(RSA_public_key_t *k);
extern void RSA_show_private_key(RSA_private_key_t *k);
#endif
extern void free_RSA_public_content(RSA_public_key_t *rsa);
extern void free_RSA_private_content(RSA_private_key_t *rsak);
#endif /* _PKCS1_H */
|