1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
|
/*
* Copyright (C) 2017-2018 Tobias Brunner
* Copyright (C) 2005-2009 Martin Willi
* Copyright (C) 2005 Jan Hutter
* HSR Hochschule fuer Technik Rapperswil
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version. See <http://www.fsf.org/copyleft/gpl.txt>.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*/
#include <gmp.h>
#include <sys/stat.h>
#include <unistd.h>
#include <stdio.h>
#include <string.h>
#include "gmp_rsa_public_key.h"
#include <utils/debug.h>
#include <asn1/oid.h>
#include <asn1/asn1.h>
#include <asn1/asn1_parser.h>
#include <crypto/hashers/hasher.h>
#include <credentials/keys/signature_params.h>
#ifdef HAVE_MPZ_POWM_SEC
# undef mpz_powm
# define mpz_powm mpz_powm_sec
#endif
typedef struct private_gmp_rsa_public_key_t private_gmp_rsa_public_key_t;
/**
* Private data structure with signing context.
*/
struct private_gmp_rsa_public_key_t {
/**
* Public interface for this signer.
*/
gmp_rsa_public_key_t public;
/**
* Public modulus.
*/
mpz_t n;
/**
* Public exponent.
*/
mpz_t e;
/**
* Keysize in bytes.
*/
size_t k;
/**
* reference counter
*/
refcount_t ref;
};
/**
* Shared functions defined in gmp_rsa_private_key.c
*/
chunk_t gmp_mpz_to_chunk(const mpz_t value);
bool gmp_emsa_pkcs1_signature_data(hash_algorithm_t hash_algorithm,
chunk_t data, size_t keylen, chunk_t *em);
/**
* RSAEP algorithm specified in PKCS#1.
*/
static chunk_t rsaep(private_gmp_rsa_public_key_t *this, chunk_t data)
{
mpz_t m, c;
chunk_t encrypted;
mpz_init(m);
mpz_import(m, data.len, 1, 1, 1, 0, data.ptr);
if (mpz_cmp_ui(m, 0) <= 0 || mpz_cmp(m, this->n) >= 0)
{ /* m must be <= n-1, and while 0 is technically a valid value, it
* doesn't really make sense here, so we filter that too */
mpz_clear(m);
return chunk_empty;
}
mpz_init(c);
mpz_powm(c, m, this->e, this->n);
encrypted.len = this->k;
encrypted.ptr = mpz_export(NULL, NULL, 1, encrypted.len, 1, 0, c);
if (encrypted.ptr == NULL)
{
encrypted.len = 0;
}
mpz_clear(c);
mpz_clear(m);
return encrypted;
}
/**
* RSAVP1 algorithm specified in PKCS#1.
*/
static chunk_t rsavp1(private_gmp_rsa_public_key_t *this, chunk_t data)
{
return rsaep(this, data);
}
/**
* Verification of an EMSA PKCS1 signature described in PKCS#1
*/
static bool verify_emsa_pkcs1_signature(private_gmp_rsa_public_key_t *this,
hash_algorithm_t algorithm,
chunk_t data, chunk_t signature)
{
chunk_t em_expected, em;
bool success = FALSE;
/* remove any preceding 0-bytes from signature */
while (signature.len && *(signature.ptr) == 0x00)
{
signature = chunk_skip(signature, 1);
}
if (signature.len == 0 || signature.len > this->k)
{
return FALSE;
}
/* generate expected signature value */
if (!gmp_emsa_pkcs1_signature_data(algorithm, data, this->k, &em_expected))
{
return FALSE;
}
/* unpack signature */
em = rsavp1(this, signature);
success = chunk_equals_const(em_expected, em);
chunk_free(&em_expected);
chunk_free(&em);
return success;
}
/**
* Verification of an EMSA PSS signature described in PKCS#1
*/
static bool verify_emsa_pss_signature(private_gmp_rsa_public_key_t *this,
rsa_pss_params_t *params, chunk_t data,
chunk_t signature)
{
ext_out_function_t xof;
hasher_t *hasher = NULL;
xof_t *mgf = NULL;
chunk_t em, hash, salt, db, h, dbmask, m;
size_t embits, maskbits;
int i;
bool success = FALSE;
if (!params || params->salt_len < 0)
{
return FALSE;
}
xof = xof_mgf1_from_hash_algorithm(params->mgf1_hash);
if (xof == XOF_UNDEFINED)
{
DBG1(DBG_LIB, "%N is not supported for MGF1", hash_algorithm_names,
params->mgf1_hash);
return FALSE;
}
chunk_skip_zero(signature);
if (signature.len == 0 || signature.len > this->k)
{
return FALSE;
}
/* EM = RSAVP1((n, e), S) */
em = rsavp1(this, signature);
if (!em.len)
{
goto error;
}
/* emBits = modBits - 1 */
embits = mpz_sizeinbase(this->n, 2) - 1;
/* mHash = Hash(M) */
hasher = lib->crypto->create_hasher(lib->crypto, params->hash);
if (!hasher)
{
DBG1(DBG_LIB, "hash algorithm %N not supported",
hash_algorithm_names, params->hash);
goto error;
}
hash = chunk_alloca(hasher->get_hash_size(hasher));
if (!hasher->get_hash(hasher, data, hash.ptr))
{
goto error;
}
salt.len = params->salt_len;
/* verify general structure of EM */
maskbits = (8 * em.len) - embits;
if (em.len < (hash.len + salt.len + 2) || em.ptr[em.len-1] != 0xbc ||
(em.ptr[0] & (0xff << (8-maskbits))))
{ /* inconsistent */
goto error;
}
/* split EM in maskedDB and H */
db = chunk_create(em.ptr, em.len - hash.len - 1);
h = chunk_create(em.ptr + db.len, hash.len);
/* dbMask = MGF(H, emLen - hLen - 1) */
mgf = lib->crypto->create_xof(lib->crypto, xof);
if (!mgf)
{
DBG1(DBG_LIB, "%N not supported", ext_out_function_names, xof);
goto error;
}
dbmask = chunk_alloca(db.len);
if (!mgf->set_seed(mgf, h) ||
!mgf->get_bytes(mgf, dbmask.len, dbmask.ptr))
{
DBG1(DBG_LIB, "%N not supported or failed", ext_out_function_names, xof);
goto error;
}
/* DB = maskedDB xor dbMask */
memxor(db.ptr, dbmask.ptr, db.len);
if (maskbits)
{
db.ptr[0] &= (0xff >> maskbits);
}
/* check DB = PS | 0x01 | salt */
for (i = 0; i < (db.len - salt.len - 1); i++)
{
if (db.ptr[i])
{ /* padding not 0 */
goto error;
}
}
if (db.ptr[i++] != 0x01)
{ /* 0x01 not found */
goto error;
}
salt.ptr = &db.ptr[i];
/* M' = 0x0000000000000000 | mHash | salt */
m = chunk_cata("ccc",
chunk_from_chars(0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00),
hash, salt);
if (!hasher->get_hash(hasher, m, hash.ptr))
{
goto error;
}
success = memeq_const(h.ptr, hash.ptr, hash.len);
error:
DESTROY_IF(hasher);
DESTROY_IF(mgf);
free(em.ptr);
return success;
}
METHOD(public_key_t, get_type, key_type_t,
private_gmp_rsa_public_key_t *this)
{
return KEY_RSA;
}
METHOD(public_key_t, verify, bool,
private_gmp_rsa_public_key_t *this, signature_scheme_t scheme, void *params,
chunk_t data, chunk_t signature)
{
switch (scheme)
{
case SIGN_RSA_EMSA_PKCS1_NULL:
return verify_emsa_pkcs1_signature(this, HASH_UNKNOWN, data, signature);
case SIGN_RSA_EMSA_PKCS1_SHA2_224:
return verify_emsa_pkcs1_signature(this, HASH_SHA224, data, signature);
case SIGN_RSA_EMSA_PKCS1_SHA2_256:
return verify_emsa_pkcs1_signature(this, HASH_SHA256, data, signature);
case SIGN_RSA_EMSA_PKCS1_SHA2_384:
return verify_emsa_pkcs1_signature(this, HASH_SHA384, data, signature);
case SIGN_RSA_EMSA_PKCS1_SHA2_512:
return verify_emsa_pkcs1_signature(this, HASH_SHA512, data, signature);
case SIGN_RSA_EMSA_PKCS1_SHA3_224:
return verify_emsa_pkcs1_signature(this, HASH_SHA3_224, data, signature);
case SIGN_RSA_EMSA_PKCS1_SHA3_256:
return verify_emsa_pkcs1_signature(this, HASH_SHA3_256, data, signature);
case SIGN_RSA_EMSA_PKCS1_SHA3_384:
return verify_emsa_pkcs1_signature(this, HASH_SHA3_384, data, signature);
case SIGN_RSA_EMSA_PKCS1_SHA3_512:
return verify_emsa_pkcs1_signature(this, HASH_SHA3_512, data, signature);
case SIGN_RSA_EMSA_PKCS1_SHA1:
return verify_emsa_pkcs1_signature(this, HASH_SHA1, data, signature);
case SIGN_RSA_EMSA_PKCS1_MD5:
return verify_emsa_pkcs1_signature(this, HASH_MD5, data, signature);
case SIGN_RSA_EMSA_PSS:
return verify_emsa_pss_signature(this, params, data, signature);
default:
DBG1(DBG_LIB, "signature scheme %N not supported in RSA",
signature_scheme_names, scheme);
return FALSE;
}
}
#define MIN_PS_PADDING 8
METHOD(public_key_t, encrypt_, bool,
private_gmp_rsa_public_key_t *this, encryption_scheme_t scheme,
chunk_t plain, chunk_t *crypto)
{
chunk_t em;
u_char *pos;
int padding;
rng_t *rng;
if (scheme != ENCRYPT_RSA_PKCS1)
{
DBG1(DBG_LIB, "encryption scheme %N not supported",
encryption_scheme_names, scheme);
return FALSE;
}
/* number of pseudo-random padding octets */
padding = this->k - plain.len - 3;
if (padding < MIN_PS_PADDING)
{
DBG1(DBG_LIB, "pseudo-random padding must be at least %d octets",
MIN_PS_PADDING);
return FALSE;
}
rng = lib->crypto->create_rng(lib->crypto, RNG_WEAK);
if (rng == NULL)
{
DBG1(DBG_LIB, "no random generator available");
return FALSE;
}
/* padding according to PKCS#1 7.2.1 (RSAES-PKCS1-v1.5-ENCRYPT) */
DBG2(DBG_LIB, "padding %u bytes of data to the rsa modulus size of"
" %u bytes", plain.len, this->k);
em.len = this->k;
em.ptr = malloc(em.len);
pos = em.ptr;
*pos++ = 0x00;
*pos++ = 0x02;
/* fill with pseudo random octets */
if (!rng_get_bytes_not_zero(rng, padding, pos, TRUE))
{
DBG1(DBG_LIB, "failed to allocate padding");
chunk_clear(&em);
rng->destroy(rng);
return FALSE;
}
rng->destroy(rng);
pos += padding;
/* append the padding terminator */
*pos++ = 0x00;
/* now add the data */
memcpy(pos, plain.ptr, plain.len);
DBG3(DBG_LIB, "padded data before rsa encryption: %B", &em);
/* rsa encryption using PKCS#1 RSAEP */
*crypto = rsaep(this, em);
DBG3(DBG_LIB, "rsa encrypted data: %B", crypto);
chunk_clear(&em);
return TRUE;
}
METHOD(public_key_t, get_keysize, int,
private_gmp_rsa_public_key_t *this)
{
return mpz_sizeinbase(this->n, 2);
}
METHOD(public_key_t, get_encoding, bool,
private_gmp_rsa_public_key_t *this, cred_encoding_type_t type,
chunk_t *encoding)
{
chunk_t n, e;
bool success;
n = gmp_mpz_to_chunk(this->n);
e = gmp_mpz_to_chunk(this->e);
success = lib->encoding->encode(lib->encoding, type, NULL, encoding,
CRED_PART_RSA_MODULUS, n, CRED_PART_RSA_PUB_EXP, e, CRED_PART_END);
chunk_free(&n);
chunk_free(&e);
return success;
}
METHOD(public_key_t, get_fingerprint, bool,
private_gmp_rsa_public_key_t *this, cred_encoding_type_t type, chunk_t *fp)
{
chunk_t n, e;
bool success;
if (lib->encoding->get_cache(lib->encoding, type, this, fp))
{
return TRUE;
}
n = gmp_mpz_to_chunk(this->n);
e = gmp_mpz_to_chunk(this->e);
success = lib->encoding->encode(lib->encoding, type, this, fp,
CRED_PART_RSA_MODULUS, n, CRED_PART_RSA_PUB_EXP, e, CRED_PART_END);
chunk_free(&n);
chunk_free(&e);
return success;
}
METHOD(public_key_t, get_ref, public_key_t*,
private_gmp_rsa_public_key_t *this)
{
ref_get(&this->ref);
return &this->public.key;
}
METHOD(public_key_t, destroy, void,
private_gmp_rsa_public_key_t *this)
{
if (ref_put(&this->ref))
{
mpz_clear(this->n);
mpz_clear(this->e);
lib->encoding->clear_cache(lib->encoding, this);
free(this);
}
}
/**
* See header.
*/
gmp_rsa_public_key_t *gmp_rsa_public_key_load(key_type_t type, va_list args)
{
private_gmp_rsa_public_key_t *this;
chunk_t n, e;
n = e = chunk_empty;
while (TRUE)
{
switch (va_arg(args, builder_part_t))
{
case BUILD_RSA_MODULUS:
n = va_arg(args, chunk_t);
continue;
case BUILD_RSA_PUB_EXP:
e = va_arg(args, chunk_t);
continue;
case BUILD_END:
break;
default:
return NULL;
}
break;
}
if (!e.len || !n.len || (n.ptr[n.len-1] & 0x01) == 0)
{
return NULL;
}
INIT(this,
.public = {
.key = {
.get_type = _get_type,
.verify = _verify,
.encrypt = _encrypt_,
.equals = public_key_equals,
.get_keysize = _get_keysize,
.get_fingerprint = _get_fingerprint,
.has_fingerprint = public_key_has_fingerprint,
.get_encoding = _get_encoding,
.get_ref = _get_ref,
.destroy = _destroy,
},
},
.ref = 1,
);
mpz_init(this->n);
mpz_init(this->e);
mpz_import(this->n, n.len, 1, 1, 1, 0, n.ptr);
mpz_import(this->e, e.len, 1, 1, 1, 0, e.ptr);
this->k = (mpz_sizeinbase(this->n, 2) + 7) / BITS_PER_BYTE;
if (!mpz_sgn(this->e))
{
destroy(this);
return NULL;
}
return &this->public;
}
|