summaryrefslogtreecommitdiff
path: root/src/pluto/gcryptfix.c
blob: 1ebacdcf65a3d2c4dd07fef33f9ac0785f034691 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
/* Routines to make gcrypt routines feel at home in Pluto.
 * Copyright (C) 1999  D. Hugh Redelmeier.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the
 * Free Software Foundation; either version 2 of the License, or (at your
 * option) any later version.  See <http://www.fsf.org/copyleft/gpl.txt>.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * for more details.
 *
 * RCSID $Id: gcryptfix.c,v 1.1 2004/03/15 20:35:28 as Exp $
 */

#include <stdlib.h>

#include <gmp.h>
#include <freeswan.h>
#include "constants.h"
#include "defs.h"
#include "log.h"
#include "rnd.h"
#include "gcryptfix.h"	/* includes <gmp.h> "defs.h" "rnd.h" */

MPI
mpi_alloc( unsigned nlimbs UNUSED )
{
    MPI n = alloc_bytes(sizeof *n, "mpi_alloc");

    mpz_init(n);
    return n;
}

MPI
mpi_alloc_secure( unsigned nlimbs )
{
    return mpi_alloc(nlimbs);
}

MPI
mpi_alloc_set_ui( unsigned long u)
{
    MPI n = alloc_bytes(sizeof *n, "mpi_copy");

    mpz_init_set_ui(n, u);
    return n;
}

MPI
mpi_copy( MPI a )
{
    MPI n = alloc_bytes(sizeof *n, "mpi_copy");

    mpz_init_set(n, a);
    return n;
}

void
mpi_free( MPI a )
{
    mpz_clear(a);
    pfree(a);
}

int
mpi_divisible_ui(MPI dividend, ulong divisor )
{
    ulong rem;
    mpz_t remtoo;

    mpz_init(remtoo);
    rem = mpz_mod_ui(remtoo, dividend, divisor);
    mpz_clear(remtoo);
    return rem == 0;
}

unsigned
mpi_trailing_zeros( MPI a )
{
    return mpz_scan1(a, 0);
}

unsigned
mpi_get_nbits( MPI a )
{
    return mpz_sizeinbase(a, 2);
}

int
mpi_test_bit( MPI a, unsigned n )
{
    /* inspired by gmp/mpz/clrbit.c */
    mp_size_t li = n / mp_bits_per_limb;

    if (li >= a->_mp_size)
	return 0;
    return (a->_mp_d[li] & ((mp_limb_t) 1 << (n % mp_bits_per_limb))) != 0;
}

void
mpi_set_bit( MPI a, unsigned n )
{
    mpz_setbit(a, n);
}

void
mpi_clear_bit( MPI a, unsigned n )
{
    mpz_clrbit(a, n);
}

void
mpi_clear_highbit( MPI a, unsigned n )
{
    /* This seems whacky, but what do I know. */
    mpz_fdiv_r_2exp(a, a, n);
}

void
mpi_set_highbit( MPI a, unsigned n )
{
    /* This seems whacky, but what do I know. */
    mpz_fdiv_r_2exp(a, a, n+1);
    mpz_setbit(a, n);
}

void
mpi_set_buffer( MPI a, const u_char *buffer, unsigned nbytes, int sign )
{
    /* this is a lot like n_to_mpz */
    size_t i;

    passert(sign == 0);	/* we won't hit any negative numbers */
    mpz_init_set_ui(a, 0);

    for (i = 0; i != nbytes; i++)
    {
	mpz_mul_ui(a, a, 1 << BITS_PER_BYTE);
	mpz_add_ui(a, a, buffer[i]);
    }
}

u_char *
get_random_bits(size_t nbits, int level UNUSED, int secure UNUSED)
{
    size_t nbytes = (nbits+7)/8;
    u_char *b = alloc_bytes(nbytes, "random bytes");

    get_rnd_bytes(b, nbytes);
    return b;
}
/**************** from gnupg-1.0.0/mpi/mpi-mpow.c
 * RES = (BASE[0] ^ EXP[0]) *  (BASE[1] ^ EXP[1]) * ... * mod M
 */
#define barrett_mulm( w, u, v, m, y, k, r1, r2 ) mpi_mulm( (w), (u), (v), (m) )

static int
build_index( MPI *exparray, int k, int i, int t )
{
    int j, bitno;
    int index = 0;

    bitno = t-i;
    for(j=k-1; j >= 0; j-- ) {
	index <<= 1;
	if( mpi_test_bit( exparray[j], bitno ) )
	    index |= 1;
    }
    /*log_debug("t=%d i=%d index=%d\n", t, i, index );*/
    return index;
}

void
mpi_mulpowm( MPI res, MPI *basearray, MPI *exparray, MPI m)
{
    int k;	/* number of elements */
    int t;	/* bit size of largest exponent */
    int i, j, idx;
    MPI *G;	/* table with precomputed values of size 2^k */
    MPI tmp;
  #ifdef USE_BARRETT
    MPI barrett_y, barrett_r1, barrett_r2;
    int barrett_k;
  #endif

    for(k=0; basearray[k]; k++ )
	;
    passert(k);
    for(t=0, i=0; (tmp=exparray[i]); i++ ) {
	/*log_mpidump("exp: ", tmp );*/
	j = mpi_get_nbits(tmp);
	if( j > t )
	    t = j;
    }
    /*log_mpidump("mod: ", m );*/
    passert(i==k);
    passert(t);
    passert( k < 10 );

#ifdef PLUTO
    m_alloc_ptrs_clear(G, 1<<k);
#else
    G = m_alloc_clear( (1<<k) * sizeof *G );
#endif

  #ifdef USE_BARRETT
    barrett_y = init_barrett( m, &barrett_k, &barrett_r1, &barrett_r2 );
  #endif
    /* and calculate */
    tmp =  mpi_alloc( mpi_get_nlimbs(m)+1 );
    mpi_set_ui( res, 1 );
    for(i = 1; i <= t; i++ ) {
	barrett_mulm(tmp, res, res, m, barrett_y, barrett_k,
				       barrett_r1, barrett_r2 );
	idx = build_index( exparray, k, i, t );
	passert( idx >= 0 && idx < (1<<k) );
	if( !G[idx] ) {
	    if( !idx )
		 G[0] = mpi_alloc_set_ui( 1 );
	    else {
		for(j=0; j < k; j++ ) {
		    if( (idx & (1<<j) ) ) {
			if( !G[idx] )
			    G[idx] = mpi_copy( basearray[j] );
			else
			    barrett_mulm( G[idx], G[idx], basearray[j],
					       m, barrett_y, barrett_k, barrett_r1, barrett_r2	);
		    }
		}
		if( !G[idx] )
		    G[idx] = mpi_alloc(0);
	    }
	}
	barrett_mulm(res, tmp, G[idx], m, barrett_y, barrett_k, barrett_r1, barrett_r2	);
    }

    /* cleanup */
    mpi_free(tmp);
  #ifdef USE_BARRETT
    mpi_free(barrett_y);
    mpi_free(barrett_r1);
    mpi_free(barrett_r2);
  #endif
    for(i=0; i < (1<<k); i++ )
	mpi_free(G[i]);
    m_free(G);
}

void
log_mpidump( const char *text UNUSED, MPI a )
{
    /* Print number in hex -- helpful to see if they match bytes.
     * Humans are not going to do arithmetic with the large numbers!
     * Much code adapted from mpz_to_n.
     */
    u_char buf[8048];	/* this ought to be big enough */
    size_t len = (mpz_sizeinbase(a, 16) + 1) / 2;   /* bytes */
    MP_INT temp1, temp2;
    int i;

    passert(len <= sizeof(buf));

    mpz_init(&temp1);
    mpz_init(&temp2);

    mpz_set(&temp1, a);

    for (i = len-1; i >= 0; i--)
    {
	buf[i] = mpz_mdivmod_ui(&temp2, NULL, &temp1, 1 << BITS_PER_BYTE);
	mpz_set(&temp1, &temp2);
    }

    passert(mpz_sgn(&temp1) == 0);	/* we must have done all the bits */
    mpz_clear(&temp1);
    mpz_clear(&temp2);

#ifdef DEBUG
    DBG_dump(text, buf, len);
#endif /* DEBUG */
}