summaryrefslogtreecommitdiff
path: root/src/pluto/pkcs1.c
blob: ade5fdd94d04449fe01a003a5a7c33a32b5ed40d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
/* Support of PKCS#1 private key data structures
 * Copyright (C) 2005 Jan Hutter, Martin Willi
 * Copyright (C) 2002-2005 Andreas Steffen
 * Hochschule fuer Technik Rapperswil, Switzerland
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the
 * Free Software Foundation; either version 2 of the License, or (at your
 * option) any later version.  See <http://www.fsf.org/copyleft/gpl.txt>.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * for more details.
 *
 * RCSID $Id: pkcs1.c,v 1.17 2006/01/04 21:00:43 as Exp $
 */

#include <stddef.h>
#include <stdlib.h>
#include <string.h>

#include <freeswan.h>
#include <libsha2/sha2.h>

#include "constants.h"
#include "defs.h"
#include "mp_defs.h"
#include "asn1.h"
#include "oid.h"
#include "log.h"
#include "pkcs1.h"
#include "md2.h"
#include "md5.h"
#include "sha1.h"
#include "rnd.h"

const struct fld RSA_private_field[] =
{
    { "Modulus",         offsetof(RSA_private_key_t, pub.n) },
    { "PublicExponent",  offsetof(RSA_private_key_t, pub.e) },

    { "PrivateExponent", offsetof(RSA_private_key_t, d) },
    { "Prime1",          offsetof(RSA_private_key_t, p) },
    { "Prime2",          offsetof(RSA_private_key_t, q) },
    { "Exponent1",       offsetof(RSA_private_key_t, dP) },
    { "Exponent2",       offsetof(RSA_private_key_t, dQ) },
    { "Coefficient",     offsetof(RSA_private_key_t, qInv) },
};

/* ASN.1 definition of a PKCS#1 RSA private key */

static const asn1Object_t privkeyObjects[] = {
  { 0, "RSAPrivateKey",			ASN1_SEQUENCE,     ASN1_NONE }, /*  0 */
  { 1,   "version",			ASN1_INTEGER,      ASN1_BODY }, /*  1 */
  { 1,   "modulus",			ASN1_INTEGER,      ASN1_BODY }, /*  2 */
  { 1,   "publicExponent",		ASN1_INTEGER,      ASN1_BODY }, /*  3 */
  { 1,   "privateExponent",		ASN1_INTEGER,      ASN1_BODY }, /*  4 */
  { 1,   "prime1",			ASN1_INTEGER,      ASN1_BODY }, /*  5 */
  { 1,   "prime2",			ASN1_INTEGER,      ASN1_BODY }, /*  6 */
  { 1,   "exponent1",			ASN1_INTEGER,      ASN1_BODY }, /*  7 */
  { 1,   "exponent2",			ASN1_INTEGER,      ASN1_BODY }, /*  8 */
  { 1,   "coefficient",			ASN1_INTEGER,      ASN1_BODY }, /*  9 */
  { 1,   "otherPrimeInfos",		ASN1_SEQUENCE,     ASN1_OPT |
							   ASN1_LOOP }, /* 10 */
  { 2,     "otherPrimeInfo",		ASN1_SEQUENCE,     ASN1_NONE }, /* 11 */
  { 3,       "prime",			ASN1_INTEGER,      ASN1_BODY }, /* 12 */
  { 3,       "exponent",		ASN1_INTEGER,      ASN1_BODY }, /* 13 */
  { 3,       "coefficient",		ASN1_INTEGER,      ASN1_BODY }, /* 14 */
  { 1,   "end opt or loop",		ASN1_EOC,          ASN1_END  }  /* 15 */
};

#define PKCS1_PRIV_KEY_VERSION		 1
#define PKCS1_PRIV_KEY_MODULUS		 2
#define PKCS1_PRIV_KEY_PUB_EXP		 3
#define PKCS1_PRIV_KEY_COEFF		 9
#define PKCS1_PRIV_KEY_ROOF		16


/*
 * forms the FreeS/WAN keyid from the public exponent e and modulus n
 */
void
form_keyid(chunk_t e, chunk_t n, char* keyid, unsigned *keysize)
{
    /* eliminate leading zero bytes in modulus from ASN.1 coding */
    while (n.len > 1 && *n.ptr == 0x00)
    {
	n.ptr++;  n.len--;
    }

    /* form the FreeS/WAN keyid */
    keyid[0] = '\0';	/* in case of splitkeytoid failure */
    splitkeytoid(e.ptr, e.len, n.ptr, n.len, keyid, KEYID_BUF);

    /* return the RSA modulus size in octets */
    *keysize = n.len;
}

/*
 * initialize an RSA_public_key_t object
 */
void
init_RSA_public_key(RSA_public_key_t *rsa, chunk_t e, chunk_t n)
{
    n_to_mpz(&rsa->e, e.ptr, e.len);
    n_to_mpz(&rsa->n, n.ptr, n.len);

    form_keyid(e, n, rsa->keyid, &rsa->k);
}

#ifdef DEBUG
static void
RSA_show_key_fields(RSA_private_key_t *k, int fieldcnt)
{
    const struct fld *p;

    DBG_log(" keyid: *%s", k->pub.keyid);

    for (p = RSA_private_field; p < &RSA_private_field[fieldcnt]; p++)
    {
	MP_INT *n = (MP_INT *) ((char *)k + p->offset);
	size_t sz = mpz_sizeinbase(n, 16);
	char buf[RSA_MAX_OCTETS * 2 + 2];	/* ought to be big enough */

	passert(sz <= sizeof(buf));
	mpz_get_str(buf, 16, n);

	DBG_log(" %s: 0x%s", p->name, buf);
    }
}

/* debugging info that compromises security! */
void
RSA_show_private_key(RSA_private_key_t *k)
{
    RSA_show_key_fields(k, elemsof(RSA_private_field));
}

void
RSA_show_public_key(RSA_public_key_t *k)
{
    /* Kludge: pretend that it is a private key, but only display the
     * first two fields (which are the public key).
     */
    passert(offsetof(RSA_private_key_t, pub) == 0);
    RSA_show_key_fields((RSA_private_key_t *)k, 2);
}
#endif

err_t
RSA_private_key_sanity(RSA_private_key_t *k)
{
    /* note that the *last* error found is reported */
    err_t ugh = NULL;
    mpz_t t, u, q1;

#ifdef DEBUG	/* debugging info that compromises security */
    DBG(DBG_PRIVATE, RSA_show_private_key(k));
#endif

    /* PKCS#1 1.5 section 6 requires modulus to have at least 12 octets.
     * We actually require more (for security).
     */
    if (k->pub.k < RSA_MIN_OCTETS)
	return RSA_MIN_OCTETS_UGH;

    /* we picked a max modulus size to simplify buffer allocation */
    if (k->pub.k > RSA_MAX_OCTETS)
	return RSA_MAX_OCTETS_UGH;

    mpz_init(t);
    mpz_init(u);
    mpz_init(q1);

    /* check that n == p * q */
    mpz_mul(u, &k->p, &k->q);
    if (mpz_cmp(u, &k->pub.n) != 0)
	ugh = "n != p * q";

    /* check that e divides neither p-1 nor q-1 */
    mpz_sub_ui(t, &k->p, 1);
    mpz_mod(t, t, &k->pub.e);
    if (mpz_cmp_ui(t, 0) == 0)
	ugh = "e divides p-1";

    mpz_sub_ui(t, &k->q, 1);
    mpz_mod(t, t, &k->pub.e);
    if (mpz_cmp_ui(t, 0) == 0)
	ugh = "e divides q-1";

    /* check that d is e^-1 (mod lcm(p-1, q-1)) */
    /* see PKCS#1v2, aka RFC 2437, for the "lcm" */
    mpz_sub_ui(q1, &k->q, 1);
    mpz_sub_ui(u, &k->p, 1);
    mpz_gcd(t, u, q1);		/* t := gcd(p-1, q-1) */
    mpz_mul(u, u, q1);		/* u := (p-1) * (q-1) */
    mpz_divexact(u, u, t);	/* u := lcm(p-1, q-1) */

    mpz_mul(t, &k->d, &k->pub.e);
    mpz_mod(t, t, u);
    if (mpz_cmp_ui(t, 1) != 0)
	ugh = "(d * e) mod (lcm(p-1, q-1)) != 1";

    /* check that dP is d mod (p-1) */
    mpz_sub_ui(u, &k->p, 1);
    mpz_mod(t, &k->d, u);
    if (mpz_cmp(t, &k->dP) != 0)
	ugh = "dP is not congruent to d mod (p-1)";

    /* check that dQ is d mod (q-1) */
    mpz_sub_ui(u, &k->q, 1);
    mpz_mod(t, &k->d, u);
    if (mpz_cmp(t, &k->dQ) != 0)
	ugh = "dQ is not congruent to d mod (q-1)";

    /* check that qInv is (q^-1) mod p */
    mpz_mul(t, &k->qInv, &k->q);
    mpz_mod(t, t, &k->p);
    if (mpz_cmp_ui(t, 1) != 0)
	ugh = "qInv is not conguent ot (q^-1) mod p";

    mpz_clear(t);
    mpz_clear(u);
    mpz_clear(q1);
    return ugh;
}

/*
 * Check the equality of two RSA public keys
 */
bool
same_RSA_public_key(const RSA_public_key_t *a, const RSA_public_key_t *b)
{
    return a == b
    || (a->k == b->k && mpz_cmp(&a->n, &b->n) == 0 && mpz_cmp(&a->e, &b->e) == 0);
}

/*
 *  Parses a PKCS#1 private key
 */
bool
pkcs1_parse_private_key(chunk_t blob, RSA_private_key_t *key)
{
    err_t ugh = NULL;
    asn1_ctx_t ctx;
    chunk_t object, modulus, exp;
    u_int level;
    int objectID = 0;

    asn1_init(&ctx, blob, 0, FALSE, DBG_PRIVATE);

    while (objectID < PKCS1_PRIV_KEY_ROOF) {

	if (!extract_object(privkeyObjects, &objectID, &object, &level, &ctx))
	     return FALSE;

	if (objectID == PKCS1_PRIV_KEY_VERSION)
	{
	    if (object.len > 0 && *object.ptr != 0)
	    {
		plog("  wrong PKCS#1 private key version");
		return FALSE;
	    }
	}
	else if (objectID >= PKCS1_PRIV_KEY_MODULUS &&
		 objectID <= PKCS1_PRIV_KEY_COEFF)
	{
	    MP_INT *u = (MP_INT *) ((char *)key
		+ RSA_private_field[objectID - PKCS1_PRIV_KEY_MODULUS].offset);

	    n_to_mpz(u, object.ptr, object.len);

	    if (objectID == PKCS1_PRIV_KEY_MODULUS)
		modulus = object;
	    else if (objectID == PKCS1_PRIV_KEY_PUB_EXP)
		exp = object;
	}
	objectID++;
    }
    form_keyid(exp, modulus, key->pub.keyid, &key->pub.k);
    ugh = RSA_private_key_sanity(key);
    return (ugh == NULL);
}

/*
 *  compute a digest over a binary blob
 */
bool
compute_digest(chunk_t tbs, int alg, chunk_t *digest)
{
    switch (alg)
    {
    case OID_MD2:
    case OID_MD2_WITH_RSA:
	{
	    MD2_CTX context;

	    MD2Init(&context);
	    MD2Update(&context, tbs.ptr, tbs.len);
	    MD2Final(digest->ptr, &context);
	    digest->len = MD2_DIGEST_SIZE;
	    return TRUE;
	}
     case OID_MD5:
     case OID_MD5_WITH_RSA:
	{
	    MD5_CTX context;

	    MD5Init(&context);
	    MD5Update(&context, tbs.ptr, tbs.len);
	    MD5Final(digest->ptr, &context);
	    digest->len = MD5_DIGEST_SIZE;
	    return TRUE;
	}
     case OID_SHA1:
     case OID_SHA1_WITH_RSA:
     case OID_SHA1_WITH_RSA_OIW:
	{
	    SHA1_CTX context;

	    SHA1Init(&context);
	    SHA1Update(&context, tbs.ptr, tbs.len);
	    SHA1Final(digest->ptr, &context);
	    digest->len = SHA1_DIGEST_SIZE;
	    return TRUE;
	}
     case OID_SHA256:
     case OID_SHA256_WITH_RSA:
	{
	    sha256_context context;

	    sha256_init(&context);
	    sha256_write(&context, tbs.ptr, tbs.len);
	    sha256_final(&context);
	    memcpy(digest->ptr, context.sha_out, SHA2_256_DIGEST_SIZE);
	    digest->len = SHA2_256_DIGEST_SIZE;
	    return TRUE;
	}
     case OID_SHA384:
     case OID_SHA384_WITH_RSA:
	{
	    sha512_context context;

	    sha384_init(&context);
	    sha512_write(&context, tbs.ptr, tbs.len);
	    sha512_final(&context);
	    memcpy(digest->ptr, context.sha_out, SHA2_384_DIGEST_SIZE);
	    digest->len = SHA2_384_DIGEST_SIZE;
	    return TRUE;
	}
     case OID_SHA512:
     case OID_SHA512_WITH_RSA:
	{
	    sha512_context context;

	    sha512_init(&context);
	    sha512_write(&context, tbs.ptr, tbs.len);
	    sha512_final(&context);
	    memcpy(digest->ptr, context.sha_out, SHA2_512_DIGEST_SIZE);
	    digest->len = SHA2_512_DIGEST_SIZE;
	    return TRUE;
	}
     default:
	digest->len = 0;
	return FALSE;
    }
}

/*
 * compute an RSA signature with PKCS#1 padding
 */
void
sign_hash(const RSA_private_key_t *k, const u_char *hash_val, size_t hash_len
    , u_char *sig_val, size_t sig_len)
{
    chunk_t ch;
    mpz_t t1, t2;
    size_t padlen;
    u_char *p = sig_val;

    DBG(DBG_CONTROL | DBG_CRYPT,
	DBG_log("signing hash with RSA Key *%s", k->pub.keyid)
    )
    /* PKCS#1 v1.5 8.1 encryption-block formatting */
    *p++ = 0x00;
    *p++ = 0x01;	/* BT (block type) 01 */
    padlen = sig_len - 3 - hash_len;
    memset(p, 0xFF, padlen);
    p += padlen;
    *p++ = 0x00;
    memcpy(p, hash_val, hash_len);
    passert(p + hash_len - sig_val == (ptrdiff_t)sig_len);

    /* PKCS#1 v1.5 8.2 octet-string-to-integer conversion */
    n_to_mpz(t1, sig_val, sig_len);	/* (could skip leading 0x00) */

    /* PKCS#1 v1.5 8.3 RSA computation y = x^c mod n
     * Better described in PKCS#1 v2.0 5.1 RSADP.
     * There are two methods, depending on the form of the private key.
     * We use the one based on the Chinese Remainder Theorem.
     */
    mpz_init(t2);

    mpz_powm(t2, t1, &k->dP, &k->p);	/* m1 = c^dP mod p */

    mpz_powm(t1, t1, &k->dQ, &k->q);	/* m2 = c^dQ mod Q */

    mpz_sub(t2, t2, t1);	/* h = qInv (m1 - m2) mod p */
    mpz_mod(t2, t2, &k->p);
    mpz_mul(t2, t2, &k->qInv);
    mpz_mod(t2, t2, &k->p);

    mpz_mul(t2, t2, &k->q);	/* m = m2 + h q */
    mpz_add(t1, t1, t2);

    /* PKCS#1 v1.5 8.4 integer-to-octet-string conversion */
    ch = mpz_to_n(t1, sig_len);
    memcpy(sig_val, ch.ptr, sig_len);
    pfree(ch.ptr);

    mpz_clear(t1);
    mpz_clear(t2);
}

/*
 * encrypt data with an RSA public key after padding
 */
chunk_t
RSA_encrypt(const RSA_public_key_t *key, chunk_t in)
{
    u_char padded[RSA_MAX_OCTETS];
    u_char *pos = padded;
    int padding = key->k - in.len - 3;
    int i;

    if (padding < 8 || key->k > RSA_MAX_OCTETS)
	return empty_chunk;

    /* add padding according to PKCS#1 7.2.1 1.+2. */
    *pos++ = 0x00;
    *pos++ = 0x02;

    /* pad with pseudo random bytes unequal to zero */
    get_rnd_bytes(pos, padding);
    for (i = 0; i < padding; i++)
    {
	while (!*pos)
 	  get_rnd_bytes(pos, 1);
	pos++;
    }

    /* append the padding terminator */
    *pos++ = 0x00;

    /* now add the data */
    memcpy(pos, in.ptr, in.len);
    DBG(DBG_RAW,
	DBG_dump_chunk("data for rsa encryption:\n", in);
	DBG_dump("padded data for rsa encryption:\n", padded, key->k)
    )

    /* convert chunk to integer (PKCS#1 7.2.1 3.a) */
    {
	chunk_t out;
	mpz_t m, c;

	mpz_init(c);
	n_to_mpz(m, padded, key->k);

	/* encrypt(PKCS#1 7.2.1 3.b) */
	mpz_powm(c, m, &key->e, &key->n);

	/* convert integer back to a chunk (PKCS#1 7.2.1 3.c) */
	out = mpz_to_n(c, key->k);
	mpz_clear(c);
	mpz_clear(m);

	DBG(DBG_RAW,
	    DBG_dump_chunk("rsa encrypted data:\n", out)
	)
	return out;
    }
}

/*
 * decrypt data with an RSA private key and remove padding
 */
bool
RSA_decrypt(const RSA_private_key_t *key, chunk_t in, chunk_t *out)
{
    chunk_t padded;
    u_char *pos;
    mpz_t t1, t2;

    n_to_mpz(t1, in.ptr,in.len);

    /* PKCS#1 v1.5 8.3 RSA computation y = x^c mod n
     * Better described in PKCS#1 v2.0 5.1 RSADP.
     * There are two methods, depending on the form of the private key.
     * We use the one based on the Chinese Remainder Theorem.
     */
    mpz_init(t2);

    mpz_powm(t2, t1, &key->dP, &key->p);	/* m1 = c^dP mod p */
    mpz_powm(t1, t1, &key->dQ, &key->q);	/* m2 = c^dQ mod Q */

    mpz_sub(t2, t2, t1);	/* h = qInv (m1 - m2) mod p */
    mpz_mod(t2, t2, &key->p);
    mpz_mul(t2, t2, &key->qInv);
    mpz_mod(t2, t2, &key->p);

    mpz_mul(t2, t2, &key->q);	/* m = m2 + h q */
    mpz_add(t1, t1, t2);

    padded = mpz_to_n(t1, key->pub.k);
    mpz_clear(t1);
    mpz_clear(t2);

    DBG(DBG_PRIVATE,
	DBG_dump_chunk("rsa decrypted data with padding:\n", padded)
    )
    pos = padded.ptr;

    /* PKCS#1 v1.5 8.1 encryption-block formatting (EB = 00 || 02 || PS || 00 || D) */

    /* check for hex pattern 00 02 in decrypted message */
    if ((*pos++ != 0x00) || (*(pos++) != 0x02))
    {
	plog("incorrect padding - probably wrong RSA key");
	freeanychunk(padded);
	return FALSE;
    }
    padded.len -= 2;

    /* the plaintext data starts after first 0x00 byte */
    while (padded.len-- > 0 && *pos++ != 0x00)

    if (padded.len == 0)
    {
	plog("no plaintext data");
	freeanychunk(padded);
	return FALSE;
    }

    clonetochunk(*out, pos, padded.len, "decrypted data");
    freeanychunk(padded);
    return TRUE;
}

/*
 * build signatureValue
 */
chunk_t
pkcs1_build_signature(chunk_t tbs, int hash_alg, const RSA_private_key_t *key
, bool bit_string)
{

    size_t siglen = key->pub.k;

    u_char digest_buf[MAX_DIGEST_LEN];
    chunk_t digest = { digest_buf, MAX_DIGEST_LEN };
    chunk_t digestInfo, alg_id, signatureValue;
    u_char *pos;

    switch (hash_alg)
    {
    case OID_MD5:
    case OID_MD5_WITH_RSA:
	alg_id = ASN1_md5_id;
	break;
    case OID_SHA1:
    case OID_SHA1_WITH_RSA:
	alg_id = ASN1_sha1_id;
	break;
    default:
	return empty_chunk;
    }
    compute_digest(tbs, hash_alg, &digest);

    /* according to PKCS#1 v2.1 digest must be packaged into
     * an ASN.1 structure for encryption
     */
    digestInfo = asn1_wrap(ASN1_SEQUENCE, "cm"
		    , alg_id
		    , asn1_simple_object(ASN1_OCTET_STRING, digest));

    /* generate the RSA signature */
    if (bit_string)
    {
	pos = build_asn1_object(&signatureValue, ASN1_BIT_STRING, 1 + siglen);
	*pos++ = 0x00;
    }
    else
    {
	pos = build_asn1_object(&signatureValue, ASN1_OCTET_STRING, siglen);
    }
    sign_hash(key, digestInfo.ptr, digestInfo.len, pos, siglen);
    pfree(digestInfo.ptr);

    return signatureValue;
}

/*
 * build a DER-encoded PKCS#1 private key object
 */
chunk_t
pkcs1_build_private_key(const RSA_private_key_t *key)
{
    chunk_t pkcs1 = asn1_wrap(ASN1_SEQUENCE, "cmmmmmmmm"
			, ASN1_INTEGER_0
			, asn1_integer_from_mpz(&key->pub.n)
			, asn1_integer_from_mpz(&key->pub.e)
			, asn1_integer_from_mpz(&key->d)
			, asn1_integer_from_mpz(&key->p)
			, asn1_integer_from_mpz(&key->q)
			, asn1_integer_from_mpz(&key->dP)
			, asn1_integer_from_mpz(&key->dQ)
			, asn1_integer_from_mpz(&key->qInv));

    DBG(DBG_PRIVATE,
	DBG_dump_chunk("PKCS#1 encoded private key:", pkcs1)
    )
    return pkcs1;
}

/*
 * build a DER-encoded PKCS#1 public key object
 */
chunk_t
pkcs1_build_public_key(const RSA_public_key_t *rsa)
{
    return asn1_wrap(ASN1_SEQUENCE, "mm"
		, asn1_integer_from_mpz(&rsa->n)
		, asn1_integer_from_mpz(&rsa->e));
}

/*
 * build a DER-encoded publicKeyInfo object
 */
chunk_t
pkcs1_build_publicKeyInfo(const RSA_public_key_t *rsa)
{
    chunk_t publicKey;
    chunk_t rawKey = pkcs1_build_public_key(rsa);

    u_char *pos = build_asn1_object(&publicKey, ASN1_BIT_STRING
			, 1 + rawKey.len);
    *pos++ = 0x00;
    mv_chunk(&pos, rawKey);

    return asn1_wrap(ASN1_SEQUENCE, "cm"
		, ASN1_rsaEncryption_id
		, publicKey);	
}
void
free_RSA_public_content(RSA_public_key_t *rsa)
{
    mpz_clear(&rsa->n);
    mpz_clear(&rsa->e);
}

void
free_RSA_private_content(RSA_private_key_t *rsak)
{
    free_RSA_public_content(&rsak->pub);
    mpz_clear(&rsak->d);
    mpz_clear(&rsak->p);
    mpz_clear(&rsak->q);
    mpz_clear(&rsak->dP);
    mpz_clear(&rsak->dQ);
    mpz_clear(&rsak->qInv);
}